Solveeit Logo

Question

Question: The value of cos \( \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) \) is A. \( \dfrac{3...

The value of cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) is
A. 34\dfrac{3}{4}
B. 34- \dfrac{3}{4}
C. 116\dfrac{1}{16}
D. 14\dfrac{1}{4}

Explanation

Solution

Hint : In this question, to find the value of cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) , we need to assume (cos118)\left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) = θ\theta . Then we will put the value of (cos118)\left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) = θ\theta in cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) , we get cos (12θ)\left( {\dfrac{1}{2}\theta } \right) . Then we will try to find the value of cos (12θ)\left( {\dfrac{1}{2}\theta } \right) .

Complete step-by-step answer :
We have cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right)
Let (cos118)\left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) = θ\theta
Putting the value of (cos118)\left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) in cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) .
We get: cos (12θ)\left( {\dfrac{1}{2}\theta } \right)
Here, we need to find the value of cos (12θ)\left( {\dfrac{1}{2}\theta } \right) .
Now we have;
(cos118)\left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) = θ\theta
Taking cos1{\cos ^{ - 1}} to RHS.
Now, cosθ=18\cos \theta = \dfrac{1}{8}
2cos2θ21=18\Rightarrow 2{\cos ^2}\dfrac{\theta }{2} - 1 = \dfrac{1}{8} (Using the formula cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1 )
Taking -1 to RHS.
2cos2θ2=1+18\Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = 1 + \dfrac{1}{8}
Taking LCM of ( 1+181 + \dfrac{1}{8} ), we get;
2cos2θ2=98\Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{8}
cos2θ2=916\Rightarrow {\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{{16}}
cosθ2=34\Rightarrow \cos \dfrac{\theta }{2} = \dfrac{3}{4} (Ans.)
Thus, the value of cos (12cos118)\left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) is 34\dfrac{3}{4} .

So, the correct answer is “Option A”.

Note : Here we have used double angle formula:
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1 = cos2θsin2θ{\cos ^2}\theta - {\sin ^2}\theta = 12sin2θ1 - 2{\sin ^2}\theta
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}
Inverse trigonometric functions: Inverse trigonometric functions are the inverse functions of the basic trigonometric functions which are sine, cosine, tangent, cotangent, secant, and cosecant functions. Inverse trigonometric functions are also called “Arcus Functions”, “Anti-trigonometric functions” or “cyclometric functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.