Solveeit Logo

Question

Question: The value of $\cos \left( 2\sin^{-1}\left(\frac{-1}{6}\right) \right) + \tan \left( \sec^{-1}\left(...

The value of

cos(2sin1(16))+tan(sec1(1312))\cos \left( 2\sin^{-1}\left(\frac{-1}{6}\right) \right) + \tan \left( \sec^{-1}\left(\frac{-13}{12}\right) \right) is

A

2936\frac{29}{36}

B

1936\frac{19}{36}

C

736\frac{7}{36}

D

4936\frac{49}{36}

Answer

1936\frac{19}{36}

Explanation

Solution

Let's evaluate the two terms separately.

Term 1: cos(2sin1(16))\cos \left( 2\sin^{-1}\left(\frac{-1}{6}\right) \right)

Let θ=sin1(16)\theta = \sin^{-1}\left(\frac{-1}{6}\right). Then sin(θ)=16\sin(\theta) = -\frac{1}{6}.

We need to find cos(2θ)\cos(2\theta). Using the double angle identity cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta), we have:

cos(2θ)=12(16)2=12(136)=1118=18118=1718\cos(2\theta) = 1 - 2\left(-\frac{1}{6}\right)^2 = 1 - 2\left(\frac{1}{36}\right) = 1 - \frac{1}{18} = \frac{18 - 1}{18} = \frac{17}{18}.

Term 2: tan(sec1(1312))\tan \left( \sec^{-1}\left(\frac{-13}{12}\right) \right)

Let ϕ=sec1(1312)\phi = \sec^{-1}\left(\frac{-13}{12}\right). Then sec(ϕ)=1312\sec(\phi) = -\frac{13}{12}.

We need to find tan(ϕ)\tan(\phi). Using the identity tan2(ϕ)+1=sec2(ϕ)\tan^2(\phi) + 1 = \sec^2(\phi), we have:

tan2(ϕ)=sec2(ϕ)1=(1312)21=1691441=169144144=25144\tan^2(\phi) = \sec^2(\phi) - 1 = \left(-\frac{13}{12}\right)^2 - 1 = \frac{169}{144} - 1 = \frac{169 - 144}{144} = \frac{25}{144}.

So, tan(ϕ)=±25144=±512\tan(\phi) = \pm \sqrt{\frac{25}{144}} = \pm \frac{5}{12}. Since sec(ϕ)\sec(\phi) is negative, ϕ\phi is in the second quadrant, so tan(ϕ)\tan(\phi) is negative.

Thus, tan(ϕ)=512\tan(\phi) = -\frac{5}{12}.

Now, we add the values of the two terms:

Value = 1718+(512)=1718512=34361536=1936\frac{17}{18} + \left(-\frac{5}{12}\right) = \frac{17}{18} - \frac{5}{12} = \frac{34}{36} - \frac{15}{36} = \frac{19}{36}.

Therefore, the value of the expression is 1936\frac{19}{36}.