Solveeit Logo

Question

Question: The value of \({\cos h}^{- 1}(\sec x)\) is...

The value of cosh1(secx){\cos h}^{- 1}(\sec x) is

A

log(1+sinxcosx)\log\left( \frac{1 + \sin x}{\cos x} \right)

B

log(1sinxcosx)\log\left( \frac{1 - \sin x}{\cos x} \right)

C

log(1+cosxsinx)\log\left( \frac{1 + \cos x}{\sin x} \right)

D

log(1cosxsinx)\log\left( \frac{1 - \cos x}{\sin x} \right)

Answer

log(1+sinxcosx)\log\left( \frac{1 + \sin x}{\cos x} \right)

Explanation

Solution

Here cosh1(secx)=log(secx+sec2x1){\cos h}^{- 1}(\sec x) = \log(\sec x + \sqrt{\sec^{2}x - 1}) =

log(secx+tanx)\log(\sec x + \tan x) =log(1+sinxcosx)\log\left( \frac{1 + \sin x}{\cos x} \right)