Question
Mathematics Question on Trigonometric Functions
The value of cos7π.cos72π.cos74π is equal to
A
21
B
−41
C
81
D
−81
Answer
−81
Explanation
Solution
cos7π.cos72π.cos74π
⇒ cos20.7π.cos21.7π.cos22.7π
⇒ 23.sin7πsin23(7π)
\left( \because \,\,\left\\{ \begin{aligned} & \cos A.\cos 2A.\cos {{2}^{2}}A.....\cos \,{{2}^{n-1}}A \\\ & =\frac{\sin \,{{2}^{n}}A}{{{2}^{n}}\,\sin \,A} \\\ \end{aligned} \right\\} \right)
=8.sinπ/7sin8π/7=8.sinπ/7sin(π+π/7)
=8.sinπ/7sin8π/7=8.sinπ/7sin(π+π/7)=8.sinπ/7−sinπ/7
=−1/8