Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cosπ7.cos2π7.cos4π7\cos \frac{\pi }{7}.\,\cos \frac{2\pi }{7}.\,\cos \frac{4\pi }{7} is equal to

A

12\frac{1}{2}

B

14-\frac{1}{4}

C

18\frac{1}{8}

D

18-\frac{1}{8}

Answer

18-\frac{1}{8}

Explanation

Solution

cosπ7.cos2π7.cos4π7\cos \,\frac{\pi }{7}.\,\cos \,\frac{2\pi }{7}.\,\cos \frac{4\pi }{7}
\Rightarrow cos20.π7.cos21.π7.cos22.π7\cos \,\,20.\frac{\pi }{7}.\cos {{2}^{1}}.\frac{\pi }{7}.\cos \,{{2}^{2}}.\frac{\pi }{7}
\Rightarrow sin23(π7)23.sinπ7\frac{\sin \,{{2}^{3}}\,\left( \frac{\pi }{7} \right)}{{{2}^{3}}.\sin \frac{\pi }{7}}
\left( \because \,\,\left\\{ \begin{aligned} & \cos A.\cos 2A.\cos {{2}^{2}}A.....\cos \,{{2}^{n-1}}A \\\ & =\frac{\sin \,{{2}^{n}}A}{{{2}^{n}}\,\sin \,A} \\\ \end{aligned} \right\\} \right)
=sin8π/78.sinπ/7=sin(π+π/7)8.sinπ/7=\frac{\sin \,8\,\pi /7}{8.\,\sin \,\pi /7}=\frac{\sin \,(\pi +\pi /7)}{8.\sin \pi /7}
=sin8π/78.sinπ/7=sin(π+π/7)8.sinπ/7=sinπ/78.sinπ/7=\frac{\sin \,8\,\pi /7}{8.\,\sin \,\pi /7}=\frac{\sin \,(\pi +\pi /7)}{8.\sin \pi /7}=\frac{-\sin \,\pi /7}{8.\,\sin \,\pi /7}
=1/8=-1/8