Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cosπ3.cosπ7.cos2π7cos4π7:\cos \frac{\pi}{3}. \cos \frac{\pi}{7}. \cos \frac{2\pi}{7}\cos \frac{4\pi}{7} :

A

16

B

116\frac{-1}{16}

C

1116\frac{11}{16}

D

1611\frac{16}{11}

Answer

116\frac{-1}{16}

Explanation

Solution

Consider cosπ3.cosπ7.cos2π7cos4π7\cos \frac{\pi}{3}. \cos \frac{\pi}{7}. \cos \frac{2\pi}{7}\cos \frac{4\pi}{7} Let A=π7A = \frac{\pi}{7} then cosπ3.cosπ7.cos2π7cos4π7\cos \frac{\pi}{3}. \cos \frac{\pi}{7}. \cos \frac{2\pi}{7}\cos \frac{4\pi}{7} =12cosAcos2Acos4A = \frac{1}{2} \cos A \cos2A \cos4A =12cosAcos2Acos22A = \frac{1}{2} \cos A \cos 2 A \cos2^{2} A =12.sin23A23sinA=12sin8A8sinA = \frac{1}{2} . \frac{\sin2^{3} A}{2^{3} \sin A} = \frac{1}{2} \frac{\sin8A}{8 \sin A} (usingcosAcos2Acos22A.......cos2n1A=sin2nA2nsinA) \left(\text{using} \cos A \cos2A \cos2^{2} A ....... \cos 2^{n-1} A = \frac{ \sin2^{n }A}{2^{n} \sin A}\right) =116sin(7A+A)sinA=116sin(π+A)sinA =\frac{1}{16} \frac{\sin\left(7A +A\right)}{\sin A} = \frac{1}{16} \frac{\sin\left(\pi+A\right)}{\sin A} =sinA16sinA=116.= - \frac{\sin A}{16 \sin A} = - \frac{1}{16} .