Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

The value of cos(2π7)+cos(4π7)+cos(6π7)cos⁡(\frac{2π}{7})+cos⁡(\frac{4π}{7})+cos⁡(\frac{6π}{7}) is equal to:

A

1-1

B

12-\frac{1}{2}

C

13-\frac{1}{3}

D

14-\frac{1}{4}

Answer

12-\frac{1}{2}

Explanation

Solution

cos(2π7)+cos(4π7)+cos(6π7)cos⁡(\frac{2π}{7})+cos⁡(\frac{4π}{7})+cos⁡(\frac{6π}{7})

=sin3(π7)sinπ7cos(2π7+6π7)2= \frac{sin3(\frac{π}{7})}{sin\frac{π}{7}} cos \frac{(\frac{2π}{7}+\frac{6π}{7})}{2}

=sin(3π7).cos(4π7)sin(π7)= \frac{sin(\frac{3π}{7}).cos(\frac{4π}{7})}{sin(\frac{π}{7})}

= 2sin4π7.cos4π72sinπ7\frac{2sin\frac{4π}{7}.cos\frac{4π}{7}}{2sin \frac{π}{7}}

= sin(8π7)2sinπ7\frac{sin(\frac{8π}{7})}{2sin\frac{π}{7}}

= sinπ72sinπ7\frac{-sin\frac{π}{7}}{2sin\frac{π}{7}}

=12\frac{-1}{2}

Hence, the correct option is (B): 12-\frac{1}{2}