Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cos2π7+cos4π7+cos6π7\cos \frac{2\pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6\pi}{7} is equal to

A

2

B

12 - \frac{1}{2}

C

12 \frac{1}{2}

D

none of these.

Answer

12 - \frac{1}{2}

Explanation

Solution

cos2π7+cos4π7+cos6π7\cos \frac{2\pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6\pi}{7} = \frac{1}{2 \sin \frac{\pi}{7}}\left\\{ 2 \cos \frac{2\pi}{7} \sin \frac{\pi}{7} + 2 \cos \frac{4\pi}{7} \sin \frac{\pi}{7} + 2 \cos \frac{6\pi}{7} \sin \frac{\pi}{7} \right\\} = \frac{1}{2 \sin \frac{\pi}{7}} \left\\{\sin \frac{3\pi}{7} -\sin \frac{\pi}{7} + \sin \frac{5 \pi}{7} - \sin \frac{3\pi}{7} + \sin \frac{7\pi}{7} - \sin \frac{5\pi}{7}\right\\} =12(sinπ=0) = - \frac{1}{2} \left(\because \sin \pi= 0 \right)