Solveeit Logo

Question

Question: The value of \[\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ }\] is equal to: a) \[2\sec {45...

The value of cosec60cot30tan60\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } is equal to:
a) 2sec45cos302\sec {45^\circ }\cos {30^\circ }
b) 2sec245cos302{\sec ^2}{45^\circ }\cos {30^\circ }
c) 3sin60sec453\sin {60^ \circ }\sec {45^\circ }
d) 3sec45cos303\sec {45^\circ }\cos {30^\circ }

Explanation

Solution

In this type of questions, we can also try by simply putting the values of trigonometric functions for different values of angles. But here we try to simplify cosec60cot30tan60\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } to reach one of the options. Here, try to convert cosec60cot30tan60\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } into a single trigonometric function. This will help us in reaching our answer.
Formula used: We have used the following functions here,
To convert trigonometric function between sin and cos, we use this identity,
sinθ=cos(90θ)\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)
To convert trigonometric function between tan and cot, we use this identity,
cotθ=tan(90θ)\cot \theta = \tan \left( {{{90}^ \circ } - \theta } \right)
cot can also be converted in sin and cos function as
cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
Relation between sin and cosec function is given as,
1sinθ=cosecθ\dfrac{1}{{\sin \theta }} = \cos ec\theta

Complete step-by-step solution:
So, the trigonometric function given to us is cosec60cot30tan60\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ }.
First we convert tan function into cot. We know that cotθ=tan(90θ)\cot \theta = \tan \left( {{{90}^ \circ } - \theta } \right). So,

cosec60cot30tan60=cosec60cot30tan(9060) cosec60cot30tan60=cosec60cot30cot30 cosec60cot30tan60=cosec60cot230  \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \cos ec{60^ \circ }\cot {30^ \circ }\tan \left( {{{90}^ \circ } - {{60}^ \circ }} \right) \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \cos ec{60^ \circ }\cot {30^ \circ }\cot {30^ \circ } \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \cos ec{60^ \circ }{\cot ^2}{30^ \circ } \\\

As, cotθ=sinθcosθ\cot \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we use this formula in above step and move ahead as,
cosec60cot30tan60=cosec60cos230sin230\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \cos ec{60^ \circ }\dfrac{{{{\cos }^2}{{30}^ \circ }}}{{{{\sin }^2}{{30}^ \circ }}}
As we know that cosec60=1sin60\cos ec{60^ \circ } = \dfrac{1}{{\sin {{60}^\circ }}}, so

cosec60cot30tan60=1sin60cos230sin230 cosec60cot30tan60=1cos30cos230sin230  \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \dfrac{1}{{\sin {{60}^ \circ }}}\dfrac{{{{\cos }^2}{{30}^ \circ }}}{{{{\sin }^2}{{30}^ \circ }}} \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \dfrac{1}{{\cos {{30}^ \circ }}}\dfrac{{{{\cos }^2}{{30}^ \circ }}}{{{{\sin }^2}{{30}^ \circ }}} \\\

We know that one cos30\cos {30^ \circ }is divided by another. We also write square of sin230{\sin ^2}{30^ \circ } separately,
cosec60cot30tan60=1sin30cos30sin30\cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = \dfrac{1}{{\sin {{30}^ \circ }}}\dfrac{{\cos {{30}^ \circ }}}{{\sin {{30}^ \circ }}}
Putting the value of 1sin30=2\dfrac{1}{{\sin {{30}^ \circ }}} = 2 and 1sin30=cosec30\dfrac{1}{{\sin {{30}^ \circ }}} = \cos ec{30^ \circ } simultaneously, we get

cosec60cot30tan60=2cosec30cos30 cosec60cot30tan60=2sec60cos30 cosec60cot30tan60=2×2×cos30 cosec60cot30tan60=2(2)2cos30 cosec60cot30tan60=2sec245cos30  \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = 2\cos ec{30^ \circ }\cos {30^ \circ } \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = 2\sec {60^ \circ }\cos {30^ \circ } \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = 2 \times 2 \times \cos {30^ \circ } \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = 2{\left( {\sqrt 2 } \right)^2}\cos {30^ \circ } \\\ \Rightarrow \cos ec{60^ \circ }\cot {30^ \circ }\tan {60^ \circ } = 2{\sec ^2}45^\circ \cos {30^ \circ } \\\

This is equal to option b). Hence we have simplified the question upto a point where we have reached one of the options .

Note: It is to note that result is not the most simplified form of the given question. We have just converted the question expression into our desired form. This shows that any trigonometric function can be written in the form of another trigonometric function depending on our choice and need.