Solveeit Logo

Question

Question: The value of \(\cos ec{15^0} + \sec {15^0} = \) A.\(2\sqrt 3 \) B.\(\sqrt 6 \) C.\(2\sqrt 6...

The value of cosec150+sec150=\cos ec{15^0} + \sec {15^0} =
A.232\sqrt 3
B.6\sqrt 6
C.262\sqrt 6
D.6+2\sqrt 6 + \sqrt 2

Explanation

Solution

We have given a trigonometric expression in cosecant and secant. With angle150{15^0}. We have to calculate the value of trigonometric expression. Firstly we write the angle in A+B or ABA + B{\text{ or }}A - B form. The function cosecant and secantcosecant{\text{ and }}secant will be converted in cosec(A+B)\cos ec(A + B) form and sec(A+B)\sec (A + B) form. Then we apply trigonometric formula of cosec(A+B) and secant(A+B)\cos ec(A + B){\text{ and secant}}(A + B) or we can convert it in sin(A+B) and cos(A+B)\sin (A + B){\text{ and cos}}(A + B) . After expanding this we will put the values of angles and solve it.

Complete step-by-step answer:
We have given a trigonometric expression. cosec150+sec150\cos ec{15^0} + \sec {15^0}. Angle 150{15^0} can be written in the difference of two angles 600{60^0} and 450{45^0}
So 150=600450{15^0} = {60^0} - {45^0}
Therefore cosec150+sec150=cosec(600450)+sec(600450)\cos ec{15^0} + \sec {15^0} = \cos ec({60^0} - {45^0}) + \sec ({60^0} - {45^0})
Also we know that cosecθ=1sinθ\cos ec\theta = \dfrac{1}{{\sin \theta }} and secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
So cosec150+sec150=1sin(600450)+1cos(600450) - - - - - - - - - (i)\cos ec{15^0} + \sec {15^0} = \dfrac{1}{{\sin ({{60}^0} - {{45}^0})}} + \dfrac{1}{{\cos ({{60}^0} - {{45}^0})}}{\text{ - - - - - - - - - (i)}}
We first solve sin(600450)\sin \left( {{{60}^0} - {{45}^0}} \right)
sin(600450)\sin \left( {{{60}^0} - {{45}^0}} \right)is in the form sin(AB)\sin \left( {A - B} \right)
Also we know that
sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
So sin(600450)=sin600cos450cos600sin450\sin \left( {{{60}^0} - {{45}^0}} \right) = \sin {60^0}\cos {45^0} - \cos {60^0}\sin {45^0}
Value of sin600=32, cos450=12\sin {60^0} = \dfrac{{\sqrt 3 }}{2},{\text{ }}\cos {45^0} = \dfrac{1}{{\sqrt 2 }}
cos600=1a, sin450=12\cos {60^0} = \dfrac{1}{a},{\text{ }}\sin {45^0} = \dfrac{1}{{\sqrt 2 }}
Therefore sin(600450)=32×1212×12\sin \left( {{{60}^0} - {{45}^0}} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}
3122\Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
Now we calculate cos(600450)\cos \left( {60{}^0 - {{45}^0}} \right)
We know that cos(AB)\cos \left( {A - B} \right)
=cosAcosB+sinAsinB= \cos A - \cos B + \sin A\sin B
So cos(600450)=cos600cos450+sin600sin450\cos \left( {{{60}^0} - {{45}^0}} \right) = \cos {60^0}\cos {45^0} + \sin {60^0}\sin {45^0}
=12×12+32×12= \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}
1+322=+3+122\Rightarrow \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }} = + \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
Putting these values in equation (i)
cosec150sec150=13122+13+122\cos ec{15^0} - \sec {15^0} = \dfrac{1}{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}} + \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}
2221+223+1\Rightarrow \dfrac{{2\sqrt 2 }}{{\sqrt 2 - 1}} + \dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}
Taking L.C.H. and solving
cosec150sec150=22(3+1)+22(31)(31)(3+1)\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right) + 2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}
cosec150sec150=26+22+2622(3)2(1)2\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 6 + 2\sqrt 2 + 2\sqrt 6 - 2\sqrt 2 }}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}
45631 462  26\Rightarrow \dfrac{{456}}{{31}} \Rightarrow {\text{ }}\dfrac{{4\sqrt 6 }}{2}{\text{ }} \Rightarrow {\text{ }}2\sqrt 6
So value of cosec150+sec150=26\cos ec{15^0} + \sec {15^0} = 2\sqrt 6
Option (C) is correct .**

Note: Trigonometry is the branch of mathematics that studies the relationship between side lengths and angles of the triangle. Trigonometry has six trigonometric functions. Which are sin, cos, tan, cosec, sec and cot{\text{sin, cos, tan, cosec, sec and cot}}. Trigonometric functions are the real functions which relate an angle of right angle triangles to the ratio of two sides of a triangle.
Trigonometric functions are also called circular functions. With the help of these trigonometric functions we can drive lots of trigonometric formulas.