Solveeit Logo

Question

Question: The value of \(\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7...

The value of cosπ7+cos2π7+cos3π7+cos4π7+cos5π7+cos6π7+cos7π7\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} is.
(a) 1
(b) -1
(c) 0
(d) none of these

Explanation

Solution

Hint:For solving this question first we will use trigonometric formula cos(θ)+cos(πθ)=0\cos \left( \theta \right)+\cos \left( \pi -\theta \right)=0 and trigonometric ratio cosπ=1\cos \pi =-1 for simplifying the given term. After that, we will easily solve it without making any mistakes and find the correct value of the given term and select the correct answer.

Complete step-by-step answer:
Given:
We have to find the value of cosπ7+cos2π7+cos3π7+cos4π7+cos5π7+cos6π7+cos7π7\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} .
Now, before we proceed we should know the following formulas:
cos(θ)+cos(πθ)=0..........(1) cosπ=1..............................(2) \begin{aligned} & \cos \left( \theta \right)+\cos \left( \pi -\theta \right)=0..........\left( 1 \right) \\\ & \cos \pi =-1..............................\left( 2 \right) \\\ \end{aligned}
Now, we will use the above formulas to simplify the given term.
We have the following equation:
cosπ7+cos2π7+cos3π7+cos4π7+cos5π7+cos6π7+cos7π7 (cosπ7+cos6π7)+(cos2π7+cos5π7)+(cos3π7+cos4π7)+cosπ \begin{aligned} & \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\\ & \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\\ \end{aligned}
Now, write 6π7=ππ7\dfrac{6\pi }{7}=\pi -\dfrac{\pi }{7} , 5π7=π2π7\dfrac{5\pi }{7}=\pi -\dfrac{2\pi }{7} and 4π7=π3π7\dfrac{4\pi }{7}=\pi -\dfrac{3\pi }{7} . Then,
(cosπ7+cos6π7)+(cos2π7+cos5π7)+(cos3π7+cos4π7)+cosπ (cosπ7+cos(ππ7))+(cos2π7+cos(π2π7))+(cos3π7+cos(π3π7))+cosπ \begin{aligned} & \left( \cos \dfrac{\pi }{7}+\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7} \right)+\cos \pi \\\ & \Rightarrow \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\\ \end{aligned}
Now, using the formula from the equation (1) in the above to simplify it. Then,
(cosπ7+cos(ππ7))+(cos2π7+cos(π2π7))+(cos3π7+cos(π3π7))+cosπ (cosπ7cosπ7)+(cos2π7cos2π7)+(cos3π7cos3π7)+cosπ cosπ \begin{aligned} & \left( \cos \dfrac{\pi }{7}+\cos \left( \pi -\dfrac{\pi }{7} \right) \right)+\left( \cos \dfrac{2\pi }{7}+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{3\pi }{7}+\cos \left( \pi -\dfrac{3\pi }{7} \right) \right)+\cos \pi \\\ & \Rightarrow \left( \cos \dfrac{\pi }{7}-\cos \dfrac{\pi }{7} \right)+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{3\pi }{7}-\cos \dfrac{3\pi }{7} \right)+\cos \pi \\\ & \Rightarrow \cos \pi \\\ \end{aligned}
Now, from the formula from the equation (2), we can write cosπ=1\cos \pi =-1 in the above to find the final answer. Then,
cosπ7+cos2π7+cos3π7+cos4π7+cos5π7+cos6π7+cos7π7 cosπ 1 \begin{aligned} & \cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} \\\ & \Rightarrow \cos \pi \\\ & \Rightarrow -1 \\\ \end{aligned}
Now, from the above result, it is evident that the value of cosπ7+cos2π7+cos3π7+cos4π7+cos5π7+cos6π7+cos7π7\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7}+\cos \dfrac{6\pi }{7}+\cos \dfrac{7\pi }{7} will be equal to -1.
Hence, option (b) will be the correct option.

Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should directly apply the formula that if A+B=πA+B=\pi , then cosA+cosB=0\cos A+\cos B=0 for solving such types of problems directly without doing any long calculation.