Question
Question: The value of \(\cos \dfrac{\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}+\cos \dfrac{4\pi }{7...
The value of cos7π+cos72π+cos73π+cos74π+cos75π+cos76π+cos77π is.
(a) 1
(b) -1
(c) 0
(d) none of these
Solution
Hint:For solving this question first we will use trigonometric formula cos(θ)+cos(π−θ)=0 and trigonometric ratio cosπ=−1 for simplifying the given term. After that, we will easily solve it without making any mistakes and find the correct value of the given term and select the correct answer.
Complete step-by-step answer:
Given:
We have to find the value of cos7π+cos72π+cos73π+cos74π+cos75π+cos76π+cos77π .
Now, before we proceed we should know the following formulas:
cos(θ)+cos(π−θ)=0..........(1)cosπ=−1..............................(2)
Now, we will use the above formulas to simplify the given term.
We have the following equation:
cos7π+cos72π+cos73π+cos74π+cos75π+cos76π+cos77π⇒(cos7π+cos76π)+(cos72π+cos75π)+(cos73π+cos74π)+cosπ
Now, write 76π=π−7π , 75π=π−72π and 74π=π−73π . Then,
(cos7π+cos76π)+(cos72π+cos75π)+(cos73π+cos74π)+cosπ⇒(cos7π+cos(π−7π))+(cos72π+cos(π−72π))+(cos73π+cos(π−73π))+cosπ
Now, using the formula from the equation (1) in the above to simplify it. Then,
(cos7π+cos(π−7π))+(cos72π+cos(π−72π))+(cos73π+cos(π−73π))+cosπ⇒(cos7π−cos7π)+(cos72π−cos72π)+(cos73π−cos73π)+cosπ⇒cosπ
Now, from the formula from the equation (2), we can write cosπ=−1 in the above to find the final answer. Then,
cos7π+cos72π+cos73π+cos74π+cos75π+cos76π+cos77π⇒cosπ⇒−1
Now, from the above result, it is evident that the value of cos7π+cos72π+cos73π+cos74π+cos75π+cos76π+cos77π will be equal to -1.
Hence, option (b) will be the correct option.
Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer quickly. Moreover, for objective problems, we should directly apply the formula that if A+B=π , then cosA+cosB=0 for solving such types of problems directly without doing any long calculation.