Question
Question: The value of \(\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\p...
The value of cos65πcos652πcos654π....cos6532π .
a)321b)641c)−321d)−641
Solution
Now to the given expression we will multiply 2sin65π to the numerator and denominator. Now we will use the formula 2sinθcosθ=sin2θ to simplify the equation. Now repeatedly we will multiply and divide the expression with 2 and use 2sinθcosθ=sin2θ till finally the expression simplifies to one term in the numerator. Now we know that sin(π−θ)=sinθ hence using this property we will get the value of the given expression.
Complete step by step answer:
Now consider the given equation cos65πcos652πcos654π....cos6532π
Now let us multiply and divide the whole equation by 2sin65π hence we get,
2sin65π1×2sin65πcos65πcos652πcos654π....cos6532π .
Now we know that 2sinθcosθ=sin2θ Hence using this we can say that 2sin65πcos65π=sin652π . Now substituting this in the above equation we get,
2sin65π1×sin652πcos652πcos654π....cos6532π .
Now let us multiply and divide the whole expression by 2. Hence we get,
2×2sin65π1×2sin652πcos652πcos654π....cos6532π
Now again using 2sinθcosθ=sin2θ we can say that 2sin652πcos652π=sin654π .
Let us substitute this equation in the above expression. Hence we get,
22sin65π1×sin654πcos654π....cos6532π
Now again we will multiply and divide the expression by 2. With this we get,
23sin65π1×2sin654πcos654πcos658π....cos6532π
Again using 2sinθcosθ=sin2θ we get,
23sin65π1×sin658πcos658π....cos6532π
Again let us divide and multiply by 2. Now the expression above becomes,
24sin65π1×2sin658πcos658π....cos6532π
Again using the formula 2sinθcosθ=sin2θ we simplify the above expression.
24sin65π1×sin6516πcos6516πcos6532π
Let us again multiply and divide the equation by 4 and use the formula 2sinθcosθ=sin2θ