Solveeit Logo

Question

Question: The value of \(\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\p...

The value of cosπ65cos2π65cos4π65....cos32π65\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65} .
a)132 b)164 c)132 d)164 \begin{aligned} & a)\dfrac{1}{32} \\\ & b)\dfrac{1}{64} \\\ & c)-\dfrac{1}{32} \\\ & d)-\dfrac{1}{64} \\\ \end{aligned}

Explanation

Solution

Now to the given expression we will multiply 2sinπ652\sin \dfrac{\pi }{65} to the numerator and denominator. Now we will use the formula 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta to simplify the equation. Now repeatedly we will multiply and divide the expression with 2 and use 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta till finally the expression simplifies to one term in the numerator. Now we know that sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta hence using this property we will get the value of the given expression.

Complete step by step answer:
Now consider the given equation cosπ65cos2π65cos4π65....cos32π65\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65}
Now let us multiply and divide the whole equation by 2sinπ652\sin \dfrac{\pi }{65} hence we get,
12sinπ65×2sinπ65cosπ65cos2π65cos4π65....cos32π65\dfrac{1}{2\sin \dfrac{\pi }{65}}\times 2\sin \dfrac{\pi }{65}\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65} .
Now we know that 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta Hence using this we can say that 2sinπ65cosπ65=sin2π652\sin \dfrac{\pi }{65}\cos \dfrac{\pi }{65}=\sin \dfrac{2\pi }{65} . Now substituting this in the above equation we get,
12sinπ65×sin2π65cos2π65cos4π65....cos32π65\dfrac{1}{2\sin \dfrac{\pi }{65}}\times \sin \dfrac{2\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65} .
Now let us multiply and divide the whole expression by 2. Hence we get,
12×2sinπ65×2sin2π65cos2π65cos4π65....cos32π65\dfrac{1}{2\times 2\sin \dfrac{\pi }{65}}\times 2\sin \dfrac{2\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65}
Now again using 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta we can say that 2sin2π65cos2π65=sin4π652\sin \dfrac{2\pi }{65}\cos \dfrac{2\pi }{65}=\sin \dfrac{4\pi }{65} .
Let us substitute this equation in the above expression. Hence we get,
122sinπ65×sin4π65cos4π65....cos32π65\dfrac{1}{{{2}^{2}}\sin \dfrac{\pi }{65}}\times \sin \dfrac{4\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65}
Now again we will multiply and divide the expression by 2. With this we get,
123sinπ65×2sin4π65cos4π65cos8π65....cos32π65\dfrac{1}{{{2}^{3}}\sin \dfrac{\pi }{65}}\times 2\sin \dfrac{4\pi }{65}\cos \dfrac{4\pi }{65}\cos \dfrac{8\pi }{65}....\cos \dfrac{32\pi }{65}
Again using 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta we get,
123sinπ65×sin8π65cos8π65....cos32π65\dfrac{1}{{{2}^{3}}\sin \dfrac{\pi }{65}}\times \sin \dfrac{8\pi }{65}\cos \dfrac{8\pi }{65}....\cos \dfrac{32\pi }{65}
Again let us divide and multiply by 2. Now the expression above becomes,
124sinπ65×2sin8π65cos8π65....cos32π65\dfrac{1}{{{2}^{4}}\sin \dfrac{\pi }{65}}\times 2\sin \dfrac{8\pi }{65}\cos \dfrac{8\pi }{65}....\cos \dfrac{32\pi }{65}
Again using the formula 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta we simplify the above expression.
124sinπ65×sin16π65cos16π65cos32π65\dfrac{1}{{{2}^{4}}\sin \dfrac{\pi }{65}}\times \sin \dfrac{16\pi }{65}\cos \dfrac{16\pi }{65}\cos \dfrac{32\pi }{65}
Let us again multiply and divide the equation by 4 and use the formula 2sinθcosθ=sin2θ2\sin \theta \cos \theta =\sin 2\theta

& \dfrac{1}{{{2}^{6}}\sin \dfrac{\pi }{65}}\times 2\times 2\sin \dfrac{16\pi }{65}\cos \dfrac{16\pi }{65}\cos \dfrac{32\pi }{65} \\\ & =\dfrac{1}{{{2}^{6}}\sin \dfrac{\pi }{65}}\times 2\sin \dfrac{32}{65}\cos \dfrac{32\pi }{65} \\\ & =\dfrac{1}{{{2}^{6}}\sin \dfrac{\pi }{65}}\times \sin \dfrac{64}{65} \\\ \end{aligned}$$ Now we know that $$\dfrac{64\pi }{65}=\dfrac{65\pi -64\pi }{65}=\pi -\dfrac{\pi }{65}$$ Hence substituting the value in the above equation we get, $\dfrac{1}{{{2}^{6}}\sin \dfrac{\pi }{65}}\times \sin \left( \pi -\dfrac{\pi }{65} \right)$ Now again we know that $\sin \left( \pi -\theta \right)=\sin \theta $ using this property we get, $\dfrac{1}{{{2}^{6}}\sin \dfrac{\pi }{65}}\times \sin \left( \dfrac{\pi }{65} \right)=\dfrac{1}{{{2}^{6}}}=\dfrac{1}{64}$ Hence $\cos \dfrac{\pi }{65}\cos \dfrac{2\pi }{65}\cos \dfrac{4\pi }{65}....\cos \dfrac{32\pi }{65}=\dfrac{1}{64}$ Hence the value of the given expression is $\dfrac{1}{64}$ **So, the correct answer is “Option b”.** **Note:** Now note that with each step we multiply the denominator by 2. If we observe the pattern we can directly write the last step. Hence in such sum instead of solving each step look for the pattern and write the expression accordingly.