Solveeit Logo

Question

Question: The value of \(\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \...

The value of cosπ11+cos3π11+cos5π11+cos7π11+cos9π11\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}} is:-
A.0 B. - 12 C.12 D. None of these  {\text{A}}{\text{.0}} \\\ {\text{B}}{\text{. - }}\dfrac{1}{2} \\\ {\text{C}}{\text{.}}\dfrac{1}{2} \\\ {\text{D}}{\text{. }}None{\text{ }}of{\text{ }}these \\\

Explanation

Solution

- Hint- First, we will multiply a term with this given expression to form this expression as in a state, where we can use trigonometry identities. Then, we will change the inappropriate angles according to their range and eventually we will divide the same term from the calculated result.

Complete step-by-step solution -

Multiply the given expression by sin5π11\sin \dfrac{{5\pi }}{{11}}
=sin(5π11)cos(π11)+sin(5π11)cos(3π11)+sin(5π11)cos(5π11)+sin(5π11)cos(7π11)+sin(5π11)cos(9π11)= \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{\pi }{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{3\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{5\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{7\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{9\pi }}{{11}}} \right)
Using the formula sinC cosD = 12[sin(C + D)+sin(C - D)]\sin {\text{C cosD = }}\dfrac{1}{2}\left[ {\sin \left( {{\text{C + D}}} \right) + \sin \left( {{\text{C - D}}} \right)} \right]
We get,
= \dfrac{1}{2}\left[ \begin{gathered} \left\\{ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right)} \right\\} + \left\\{ {\sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right)} \right\\} + \left\\{ {\sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( 0 \right)} \right\\} + \left\\{ {\sin \left( {\dfrac{{12\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right)} \right\\} \\\ \+ \left\\{ {\sin \left( {\dfrac{{14\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right)} \right\\} \\\ \end{gathered} \right]
Now. To find the exact quadrant of all the angles given we subtract 2π2\pi from the angles whose values are increasing beyond π\pi .
=12[sin(6π11)+sin(4π11)+sin(8π11)+sin(2π11)+sin(10π11)+sin(12π112π)+sin(2π11)+ sin(14π112π)+sin(4π11) ] =12[sin(6π11)+sin(4π11)+sin(8π11)+sin(2π11)+sin(10π11)+sin(10π11)+sin(2π11)+sin(8π11)+ sin(4π11) ]  = \dfrac{1}{2}\left[ \begin{gathered} \sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{12\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \\\ \sin \left( {\dfrac{{14\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\\ \end{gathered} \right] \\\ = \dfrac{1}{2}\left[ \begin{gathered} \sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 8\pi }}{{11}}} \right) + \\\ \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\\ \end{gathered} \right] \\\
Now as we know sin( - θ)=sinθ\sin \left( {{\text{ - }}\theta } \right) = - \sin \theta
Using this formula we get,=12[sin(6π11)+sin(4π11)sin(4π11)+sin(8π11)sin(8π11)+sin(2π11)sin(2π11)+sin(10π11)sin(10π11)] =12×[sin(6π11)] As sinθ = sin(π - θ), =12×[sin(5π11)]  = \dfrac{1}{2}\left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) - \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) - \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) - \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) - \sin \left( {\dfrac{{10\pi }}{{11}}} \right)} \right] \\\ = \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right)} \right] \\\ {\text{As sin}}\theta {\text{ = sin}}\left( {\pi {\text{ - }}\theta } \right), \\\ = \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right] \\\
Since we had multiplied the expression by sin(5π11)\sin \left( {\dfrac{{5\pi }}{{11}}} \right) .we divide by the same now
The expression then becomes=\dfrac{{\left[ {\dfrac{1}{2} \times \left\\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\\}} \right]}}{{\left\\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\\}}} = \dfrac{1}{2}

Note - Given, the trigonometric product identities are important for these type of questions and also one should know the range of angles and how to make an angle within range as only this approach will lead us to an answer and to avoid mistakes do remember to divide the term in the end which is multiplied in the beginning of the solution as it is one of the typical step to remember.