Solveeit Logo

Question

Question: The value of \(\cos {{9}^{0}}-\sin {{9}^{0}}\) is: (a) \(-\dfrac{\sqrt{5-\sqrt{5}}}{2}\) (b) \(...

The value of cos90sin90\cos {{9}^{0}}-\sin {{9}^{0}} is:
(a) 552-\dfrac{\sqrt{5-\sqrt{5}}}{2}
(b) 5+54\dfrac{5+\sqrt{5}}{4}
(c) 1255\dfrac{1}{2}\sqrt{5-\sqrt{5}}
(d) None of these

Explanation

Solution

Hint:First of all multiply and divide the given expression by 2\sqrt{2} then the expression will look like 2(12cos9012sin90)\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\cos {{9}^{0}}-\dfrac{1}{\sqrt{2}}\sin {{9}^{0}} \right).Now, in this expression we can write 12\dfrac{1}{\sqrt{2}} as cos450\cos {{45}^{0}} or sin450\sin {{45}^{0}} so we can write the expression as 2(sin450cos90cos450sin90)\sqrt{2}\left( \sin {{45}^{0}}\cos {{9}^{0}}-\cos {{45}^{0}}\sin {{9}^{0}} \right) which can be further written as 2(sin(45090))\sqrt{2}\left( \sin \left( {{45}^{0}}-{{9}^{0}} \right) \right) which is equal to 2sin360\sqrt{2}\sin {{36}^{0}} then put the value of sin360\sin {{36}^{0}}.

Complete step-by-step answer:
The expression that we have to evaluate is:
cos90sin90\cos {{9}^{0}}-\sin {{9}^{0}}
Multiplying and dividing the above expression by 2\sqrt{2} will give us the following expression.
2(12cos9012sin90)\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\cos {{9}^{0}}-\dfrac{1}{\sqrt{2}}\sin {{9}^{0}} \right)
We know from the value of trigonometric ratios that the value of sin450&cos450\sin {{45}^{0}}\And \cos {{45}^{0}} is equal to 12\dfrac{1}{\sqrt{2}} so substituting the value of 12\dfrac{1}{\sqrt{2}} in the above expression we get,
2(sin450cos90cos450sin90)\sqrt{2}\left( \sin {{45}^{0}}\cos {{9}^{0}}-\cos {{45}^{0}}\sin {{9}^{0}} \right) …………Eq. (1)
If you can see carefully the above expression, you recall that the above expression apart from 2\sqrt{2} is the expansion of sin(45090)\sin \left( {{45}^{0}}-{{9}^{0}} \right) which is equal to sin450cos90cos450sin90\sin {{45}^{0}}\cos {{9}^{0}}-\cos {{45}^{0}}\sin {{9}^{0}} so writing this expression in as sin(45090)\sin \left( {{45}^{0}}-{{9}^{0}} \right) in the above we get,
2sin(45090)\sqrt{2}\sin \left( {{45}^{0}}-{{9}^{0}} \right)
Simplifying the above expression we get,
2sin360\sqrt{2}\sin {{36}^{0}}
We know from the trigonometric ratios that the value of sin360\sin {{36}^{0}} is equal to 10254\dfrac{\sqrt{10-2\sqrt{5}}}{4} so substituting this value of sin360\sin {{36}^{0}} in the above expression we get,
2(10254)\sqrt{2}\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)
Now, taking 2\sqrt{2} as common from the expression in the under root we get,
2(2(5)254) =2(2)(554) =2(554) =552 \begin{aligned} & \sqrt{2}\left( \dfrac{\sqrt{2\left( 5 \right)-2\sqrt{5}}}{4} \right) \\\ & =\sqrt{2}\left( \sqrt{2} \right)\left( \dfrac{\sqrt{5-\sqrt{5}}}{4} \right) \\\ & =2\left( \dfrac{\sqrt{5-\sqrt{5}}}{4} \right) \\\ & =\dfrac{\sqrt{5-\sqrt{5}}}{2} \\\ \end{aligned}
From the above solution, the evaluation of the given expression is 552\dfrac{\sqrt{5-\sqrt{5}}}{2}.
Hence, the correct option is (c).

Note: The alternate way of solving the above problem is to rewrite the eq. (1) in the above solution as:
2(sin450cos90cos450sin90)\sqrt{2}\left( \sin {{45}^{0}}\cos {{9}^{0}}-\cos {{45}^{0}}\sin {{9}^{0}} \right)
In place of this expression we can write the above expression as:
2(cos450cos90sin450sin90)\sqrt{2}\left( \cos {{45}^{0}}\cos {{9}^{0}}-\sin {{45}^{0}}\sin {{9}^{0}} \right)
Now, the above trigonometric expression i.e. cos450cos90sin450sin90\cos {{45}^{0}}\cos {{9}^{0}}-\sin {{45}^{0}}\sin {{9}^{0}} is the expansion of cos(450+90)\cos \left( {{45}^{0}}+{{9}^{0}} \right) so we can substitute this value of expansion in the above expression.
2cos(450+90)\sqrt{2}\cos \left( {{45}^{0}}+{{9}^{0}} \right)
Simplifying the above expression we get,
2cos540\sqrt{2}\cos {{54}^{0}}
We know from the trigonometric ratios that the value of cos540\cos {{54}^{0}} is equal to 10254\dfrac{\sqrt{10-2\sqrt{5}}}{4} we get,
2(10254) =552 \begin{aligned} & \sqrt{2}\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right) \\\ & =\dfrac{\sqrt{5-\sqrt{5}}}{2} \\\ \end{aligned}
Hence, we have got the same value of the expression in the given question as we have solved above.We should remember the formula of sin(AB)=sinAcosBcosAsinB\sin(A-B)=\sin A \cos B-\cos A \sin B and cos(A+B)=cosAcosBsinAsinB\cos(A+B)=\cos A \cos B-\sin A \sin B.Also we have to memorize the trigonometric angle value of sin360\sin {{36}^{0}} is 10254\dfrac{\sqrt{10-2\sqrt{5}}}{4} and cos540\cos {{54}^{0}} is 10254\dfrac{\sqrt{10-2\sqrt{5}}}{4}