Solveeit Logo

Question

Question: The value of \(\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }\) is...

The value of cos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } is

Explanation

Solution

Generally, trigonometric identities are equalities that involve trigonometric functions and are useful whenever trigonometric functions are involved in an expression or an equation. The six basic trigonometric ratios are sine, cosine, tangent, cosecant, secant, and cotangent and all the fundamental trigonometric identities are derived from the six trigonometric ratios. We need to analyze the given information so that we are able to solve the problem. Here we are asked to calculate the value ofcos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }.
We need to apply the appropriate trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) cos(A+B)+cos(AB)=2cosAcosBcos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosB
b)cos(AB)=cosAcosB+sinAsinB\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B

Complete step by step answer:
The given expression iscos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }.
To find: The value of cos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }
For our convenience, we are rewriting the following terms.
Here, cos52\cos {52^ \circ }can be written ascos(608)\cos \left( {{{60}^ \circ } - {8^\circ }} \right)
Similarly, cos68\cos {68^ \circ }can be written ascos(60+8)\cos \left( {{{60}^ \circ } + {8^\circ }} \right)
Also, cos172\cos {172^ \circ } can be written ascos(1808)\cos \left( {{{180}^ \circ } - {8^\circ }} \right)
Now, we shall apply the formulacos(AB)=cosAcosB+sinAsinB\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B
That is cos(1808)=cos180cos8+sin180sin8\cos \left( {{{180}^ \circ } - {8^\circ }} \right) = cos{180^ \circ }cos{8^\circ } + \sin {180^ \circ }\sin {8^\circ }
=1×cos8+0×sin8= - 1 \times \cos {8^\circ } + 0 \times \sin {8^\circ }
(We know thatcos180=1\cos {180^\circ } = - 1 andsin180=0\sin {180^\circ } = 0 )
=cos8= - \cos {8^\circ }
Hence, cos172\cos {172^ \circ } =cos8 = - \cos {8^\circ }
Now, we shall substitute the obtained results in the given expression.
cos52+cos68+cos172=cos(608)+cos(60+8)cos8\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos \left( {{{60}^ \circ } - {8^\circ }} \right) + \cos \left( {{{60}^ \circ } + {8^\circ }} \right) - \cos {8^\circ }
Now, we shall apply the formula cos(A+B)+cos(AB)=2cosAcosBcos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosBon the first two terms
cos52+cos68+cos172=2cos60cos8cos8\Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\cos {60^ \circ }\cos {8^\circ } - \cos {8^\circ }
We know thatcos60=12\cos {60^\circ } = \dfrac{1}{2}
cos52+cos68+cos172=212cos8cos8\Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\dfrac{1}{2}\cos {8^\circ } - \cos {8^\circ }
cos52+cos68+cos172=cos8cos8\Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos {8^\circ } - \cos {8^\circ }
Hence we getcos52+cos68+cos172=0 \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 0

Note: Generally, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified. Here we are asked to calculate the value of cos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }. In this question, we have applied the appropriate trigonometric identities to obtain the desired answer. Hence, the value cos52+cos68+cos172\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } is zero.