Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cos2(π4+θ)sin2(π4θ){{\cos }^{2}}\left( \frac{\pi }{4}+\theta \right)-{{\sin }^{2}}\left( \frac{\pi }{4}-\theta \right) is

A

00

B

cos2θ\cos \,\,2\theta

C

sin2θsin\,\,2\theta

D

cosθ\cos \,\theta

Answer

00

Explanation

Solution

We know that, cos2(A)sin2(B){{\cos }^{2}}\,(A)-{{\sin }^{2}}(B)
=cos(A+B)cos(AB)=\cos (A+B)\,\cos \,(A-B)
\therefore cos2(π4+θ)sin2(π4θ){{\cos }^{2}}\,\left( \frac{\pi }{4}+\theta \right)-{{\sin }^{2}}\left( \frac{\pi }{4}-\theta \right)
=cos(π4+θ+π4θ)cos(π4+θπ4+θ)=\cos \,\left( \frac{\pi }{4}+\theta +\frac{\pi }{4}-\theta \right)\,\,\cos \,\left( \frac{\pi }{4}+\theta -\frac{\pi }{4}+\theta \right)
=cos(π2)cos(2θ)=0=\cos \,\left( \frac{\pi }{2} \right)\,\cos \,(2\,\theta )=0