Question
Question: The value of \({\cos ^2}45^\circ - {\sin ^2}15^\circ \) is A. \(\dfrac{{\sqrt 3 - 1}}{{2 - \sqrt 2...
The value of cos245∘−sin215∘ is
A. 2−23−1
B. 223+1
C. 23
D. 43
Solution
We can expand sin15∘ as sin(45∘−30∘) . Then we can simplify it using the identity, sin(A−B)=sinAcosB−cosAsinB . Then we can substitute this in the given expression. We can then give the values for cos45∘,sin45∘,cos30∘ and sin30∘ . After further simplification, we will get the required solution.
Complete step-by-step answer:
We need to find the value of cos245∘−sin215∘
We can take the 2nd term of the expression, sin15∘
We can write 15 as 15=45−30
⇒sin15∘=sin(45∘−30∘)
We know that sin(A−B)=sinAcosB−cosAsinB . On applying this, we get,
⇒sin15∘=sin45∘cos30∘−cos45∘sin30∘ .
We know that cos45∘=21 , cos30∘=23 , sin45∘=21 and sin30∘=21 . On substituting these in the above equation, we get,
⇒sin15∘=21×23−21×21
On simplification, we get,
⇒sin15∘=223−1
Now we can take the square.
⇒sin215∘=(223−1)2
⇒sin215∘=(22)2(3−1)2
We know that (a−b)2=a2+b2−2ab . On applying this in numerator, we get,
⇒sin215∘=81+3−23
On simplification we get,
⇒sin215∘=84−23
On dividing the numerator and denominator by 2, we get,
⇒sin215∘=42−3 … (1)
Now we need to find the value of cos245∘ .
We know that cos45∘=21
On squaring on both sides, we get,
cos245∘=21 .. (2)
We have the expression cos245∘−sin215∘
Let I=cos245∘−sin215∘
We can substitute equation (1) and (2) to the above expression.
⇒I=21−42−3
We can multiply and divide the 1st term with 2 to make the denominators equal.
⇒I=42−42−3
As the denominators are equal, we can add the numerators.
⇒I=42−2+3
On simplification, we get,
⇒I=43
Therefore, the value of cos245∘−sin215∘ is 43
So, the correct answer is option D.
Note: Alternate solution is given by,
We need to find the value of cos245∘−sin215∘
We can use the identity, a2−b2=(a+b)(a−b)
⇒cos245∘−sin215∘=(cos45∘+sin15∘)(cos45∘−sin15∘) …. (a)
We can write 15 as 15=45−30
⇒sin15∘=sin(45∘−30∘)
We know that sin(A−B)=sinAcosB−cosAsinB . On applying this, we get,
⇒sin15∘=sin45∘cos30∘−cos45∘sin30∘ .
We know that cos45∘=21 , cos30∘=23 , sin45∘=21 and sin30∘=21 . On substituting these in the above equation, we get,
⇒sin15∘=21×23−21×21
On simplification, we get,
⇒sin15∘=223−1
We know that cos45∘=21 .
Substituting these in equation (a), we get,
⇒cos245∘−sin215∘=(21+223−1)(21−223−1)
On taking LCM of terms inside brackets we get,
⇒cos245∘−sin215∘=(222+223−1)(222−223−1)
On adding we get,
⇒cos245∘−sin215∘=(222+(3−1))(222−(3−1))
On simplification we get,
⇒cos245∘−sin215∘=8(2−(3−1))(2+(3−1))
We know that a2−b2=(a+b)(a−b) , using this we get,
⇒cos245∘−sin215∘=822−(3−1)2
On simplification we get,
⇒cos245∘−sin215∘=84−(4−23)
Hence, we have,
⇒cos245∘−sin215∘=823
On dividing the numerator and denominator by 2 we get,
⇒cos245∘−sin215∘=43
Therefore, the value of cos245∘−sin215∘ is 43 .