Solveeit Logo

Question

Question: The value of \({\cos ^2}45^\circ - {\sin ^2}15^\circ \) is A. \(\dfrac{{\sqrt 3 - 1}}{{2 - \sqrt 2...

The value of cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ is
A. 3122\dfrac{{\sqrt 3 - 1}}{{2 - \sqrt 2 }}
B. 3+122\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
C. 32\dfrac{{\sqrt 3 }}{{\sqrt 2 }}
D. 34\dfrac{{\sqrt 3 }}{4}

Explanation

Solution

We can expand sin15\sin 15^\circ as sin(4530)\sin \left( {45^\circ - 30^\circ } \right) . Then we can simplify it using the identity, sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B . Then we can substitute this in the given expression. We can then give the values for cos45,sin45,cos30\cos 45^\circ ,\sin 45^\circ ,\cos 30^\circ and sin30\sin 30^\circ . After further simplification, we will get the required solution.

Complete step-by-step answer:
We need to find the value of cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ
We can take the 2nd term of the expression, sin15\sin 15^\circ
We can write 15 as 15=453015 = 45 - 30
sin15=sin(4530)\Rightarrow \sin 15^\circ = \sin \left( {45^\circ - 30^\circ } \right)
We know that sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B . On applying this, we get,
sin15=sin45cos30cos45sin30\Rightarrow \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ .
We know that cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} , sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }} and sin30=12\sin 30^\circ = \dfrac{1}{2} . On substituting these in the above equation, we get,
sin15=12×3212×12\Rightarrow \sin 15^\circ = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}
On simplification, we get,
sin15=3122\Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
Now we can take the square.
sin215=(3122)2\Rightarrow {\sin ^2}15^\circ = {\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)^2}
sin215=(31)2(22)2\Rightarrow {\sin ^2}15^\circ = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{{\left( {2\sqrt 2 } \right)}^2}}}
We know that (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab . On applying this in numerator, we get,
sin215=1+3238\Rightarrow {\sin ^2}15^\circ = \dfrac{{1 + 3 - 2\sqrt 3 }}{8}
On simplification we get,
sin215=4238\Rightarrow {\sin ^2}15^\circ = \dfrac{{4 - 2\sqrt 3 }}{8}
On dividing the numerator and denominator by 2, we get,
sin215=234\Rightarrow {\sin ^2}15^\circ = \dfrac{{2 - \sqrt 3 }}{4} … (1)
Now we need to find the value of cos245{\cos ^2}45^\circ .
We know that cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}
On squaring on both sides, we get,
cos245=12{\cos ^2}45^\circ = \dfrac{1}{2} .. (2)
We have the expression cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ
Let I=cos245sin215I = {\cos ^2}45^\circ - {\sin ^2}15^\circ
We can substitute equation (1) and (2) to the above expression.
I=12234\Rightarrow I = \dfrac{1}{2} - \dfrac{{2 - \sqrt 3 }}{4}
We can multiply and divide the 1st term with 2 to make the denominators equal.
I=24234\Rightarrow I = \dfrac{2}{4} - \dfrac{{2 - \sqrt 3 }}{4}
As the denominators are equal, we can add the numerators.
I=22+34\Rightarrow I = \dfrac{{2 - 2 + \sqrt 3 }}{4}
On simplification, we get,
I=34\Rightarrow I = \dfrac{{\sqrt 3 }}{4}
Therefore, the value of cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ is 34\dfrac{{\sqrt 3 }}{4}
So, the correct answer is option D.

Note: Alternate solution is given by,
We need to find the value of cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ
We can use the identity, a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
cos245sin215=(cos45+sin15)(cos45sin15)\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \left( {\cos 45^\circ + \sin 15^\circ } \right)\left( {\cos 45^\circ - \sin 15^\circ } \right) …. (a)
We can write 15 as 15=453015 = 45 - 30
sin15=sin(4530)\Rightarrow \sin 15^\circ = \sin \left( {45^\circ - 30^\circ } \right)
We know that sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B . On applying this, we get,
sin15=sin45cos30cos45sin30\Rightarrow \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ .
We know that cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} , sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }} and sin30=12\sin 30^\circ = \dfrac{1}{2} . On substituting these in the above equation, we get,
sin15=12×3212×12\Rightarrow \sin 15^\circ = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}
On simplification, we get,
sin15=3122\Rightarrow \sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
We know that cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} .
Substituting these in equation (a), we get,
cos245sin215=(12+3122)(123122)\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)
On taking LCM of terms inside brackets we get,
cos245sin215=(222+3122)(2223122)\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \left( {\dfrac{2}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\left( {\dfrac{2}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)
On adding we get,
cos245sin215=(2+(31)22)(2(31)22)\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \left( {\dfrac{{2 + \left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }}} \right)\left( {\dfrac{{2 - \left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }}} \right)
On simplification we get,
cos245sin215=(2(31))(2+(31))8\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \dfrac{{\left( {2 - \left( {\sqrt 3 - 1} \right)} \right)\left( {2 + \left( {\sqrt 3 - 1} \right)} \right)}}{8}
We know that a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) , using this we get,
cos245sin215=22(31)28\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \dfrac{{{2^2} - {{\left( {\sqrt 3 - 1} \right)}^2}}}{8}
On simplification we get,
cos245sin215=4(423)8\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \dfrac{{4 - \left( {4 - 2\sqrt 3 } \right)}}{8}
Hence, we have,
cos245sin215=238\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \dfrac{{2\sqrt 3 }}{8}
On dividing the numerator and denominator by 2 we get,
cos245sin215=34\Rightarrow {\cos ^2}45^\circ - {\sin ^2}15^\circ = \dfrac{{\sqrt 3 }}{4}
Therefore, the value of cos245sin215{\cos ^2}45^\circ - {\sin ^2}15^\circ is 34\dfrac{{\sqrt 3 }}{4} .