Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cos15sin15\cos\, 15^{\circ} - \sin \,15^{\circ} is

A

0

B

12\frac{1}{\sqrt{2}}

C

12-\frac{1}{\sqrt{2}}

D

122\frac{1}{2\sqrt{2}}

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

Now, cos15sin15\cos 15^{\circ}-\sin 15^{\circ}
=2(12cos1512sin15)=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos 15^{\circ}-\frac{1}{\sqrt{2}} \sin 15^{\circ}\right)
=2(sin45cos15cos45sin15)= \sqrt{2}\left(\sin 45^{\circ} \cos 15^{\circ}-\cos 45^{\circ} \sin 15^{\circ}\right)
=2sin(4515)=\sqrt{2} \sin \left(45^{\circ}-15^{\circ}\right)
=2sin30=2×12= \sqrt{2} \sin 30^{\circ}=\sqrt{2} \times \frac{1}{2}
=12= \frac{1}{\sqrt{2}}