Solveeit Logo

Question

Question: The value of \(\cos 12{^\circ} + \cos 84{^\circ} + \cos 156{^\circ} + \cos 132{^\circ}\) is...

The value of cos12+cos84+cos156+cos132\cos 12{^\circ} + \cos 84{^\circ} + \cos 156{^\circ} + \cos 132{^\circ} is

A

12\frac{1}{2}

B

1

C

12- \frac{1}{2}

D

18\frac{1}{8}

Answer

12- \frac{1}{2}

Explanation

Solution

cos12o+cos84o+cos156o+cos132o\cos{}12^{o} + \cos{}84^{o} + \cos{}156^{o} + \cos{}132^{o}

=(cos12o+cos132o)+(cos84o+cos156o)= (\cos{}12^{o} + \cos{}132^{o}) + (\cos{}84^{o} + \cos{}156^{o})

=2cos72ocos60o+2cos120ocos36o= 2\cos 72^{o}\cos{}60^{o} + 2\cos{}120^{o}\cos{}36^{o}

=2[cos72o×1212×cos36o]= 2\left\lbrack \cos{}72^{o} \times \frac{1}{2} - \frac{1}{2} \times \cos{}36^{o} \right\rbrack

=[cos72ocos36o]= \lbrack\cos{}72^{o} - \cos 36^{o}\rbrack =[5145+14]=12= \left\lbrack \frac{\sqrt{5} - 1}{4} - \frac{\sqrt{5} + 1}{4} \right\rbrack = \frac{- 1}{2}.