Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cos12+cos84+cos156+cos132cos \,12^{\circ} + cos84^{\circ} + cos \,156^{\circ} + cos \,132^{\circ} is

A

12\frac{1}{2}

B

11

C

12-\frac{1}{2}

D

18\frac{1}{8}

Answer

12-\frac{1}{2}

Explanation

Solution

cos12+cos84+cos156+cos132cos \,12^{\circ} + cos84^{\circ} + cos \,156^{\circ} + cos \,132^{\circ} =cos156+cos84+cos132+cos12=cos \,156^{\circ} + cos84^{\circ} + cos \,132^{\circ} + cos \,12^{\circ} =2cos(156+842)cos(156842)=2\,cos\left(\frac{156^{\circ}+84^{\circ}}{2}\right)cos\left(\frac{156^{\circ}-84^{\circ}}{2}\right) +2cos(132+122)cos(132122)+2\,cos\left(\frac{132^{\circ}+12^{\circ}}{2}\right)cos\left(\frac{132^{\circ}-12^{\circ}}{2}\right) =2cos120cos36+2cos72cos60=2\,cos\,120^{\circ}\,cos36^{\circ}+2cos72^{\circ}\,cos60^{\circ} =2(12)cos36+2cos72×12=2\left(-\frac{1}{2}\right)cos36^{\circ}+2cos72^{\circ}\times\frac{1}{2} =cos36+cos72=-cos36^{\circ}+cos72^{\circ} =5+14+514=-\frac{\sqrt{5}+1}{4}+\frac{\sqrt{5}-1}{4} =12=-\frac{1}{2}