Question
Mathematics Question on Inverse Trigonometric Functions
The value of cos−1x+cos−1(2x+213−3x2);21≤x≤1 is
A
−3π
B
3π
C
π3
D
−π3
Answer
3π
Explanation
Solution
Let cos−1x=y
⇒x=cosy, so that 21≤x≤1
or 0≤y≤3π
and 2x+213−3x2=21cosy+23siny
=cos3π+213−3x2=21cosy+23siny
=cos3πcosy+sin3πsiny=cos(3π−y)
⇒cos−1(2x+213−3x2)
=3π−y
∴ the given expression is equal to
y+3π−y, i.e., \frac{\pi}{3}$