Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of cos1x+cos1(x2+1233x2);12x1\cos^{-1}x + \cos^{-1} \left(\frac{x}{2} + \frac{1}{2} \sqrt{3-3x^{2}}\right) ; \frac{1}{2} \le x \le 1 is

A

π3 - \frac{\pi}{3}

B

π3 \frac{\pi}{3}

C

3π \frac{3}{\pi}

D

3π - \frac{3}{\pi}

Answer

π3 \frac{\pi}{3}

Explanation

Solution

Let cos1x=y\cos ^{-1} x=y
x=cosy\Rightarrow x=\cos y, so that 12x1\frac{1}{2} \leq x \leq 1
or 0yπ30 \leq y \leq \frac{\pi}{3}
and x2+1233x2=12cosy+32siny\frac{x}{2}+\frac{1}{2} \sqrt{3-3 x^{2}}=\frac{1}{2} \cos y+\frac{\sqrt{3}}{2} \sin y
=cosπ3+1233x2=12cosy+32siny=\cos \frac{\pi}{3}+\frac{1}{2} \sqrt{3-3 x^{2}}=\frac{1}{2} \cos y+\frac{\sqrt{3}}{2} \sin y
=cosπ3cosy+sinπ3siny=cos(π3y)=\cos \frac{\pi}{3} \cos y+\sin \frac{\pi}{3} \sin y=\cos \left(\frac{\pi}{3}-y\right)
cos1(x2+1233x2)\Rightarrow \cos ^{-1}\left(\frac{x}{2}+\frac{1}{2} \sqrt{3-3 x^{2}}\right)
=π3y=\frac{\pi}{3}-y
\therefore the given expression is equal to
y+π3y,y+\frac{\pi}{3}-y, i.e., \frac{\pi}{3}$