Solveeit Logo

Question

Question: The value of \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \r...

The value of cos1(12)+2sin1(12){\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) is equal to
(a) π6\dfrac{\pi }{6}
(b) π3\dfrac{\pi }{3}
(c) 2π3\dfrac{{2\pi }}{3}
(d) π4\dfrac{\pi }{4}

Explanation

Solution

Here, we need to find the value of the given expression. We will equate each term of the given expression to a variable and form an equation. We will simplify each of these equations using trigonometric ratios of specific angles. Then, we will rewrite and simplify the given expression to get the required answer.

Complete step-by-step answer:
Let cos1(12)=α{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha , and sin1(12)=β{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta .
We will simplify the two equations to find the values of α\alpha and β\beta . Then, we will use these values of α\alpha and β\beta to simplify and obtain the value of the given expression.
Rewriting the given expression, we get
cos1(12)+2sin1(12)=α+2β\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta
First, we will simplify the equation cos1(12)=α{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha .
Rewriting the equation cos1(12)=α{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha , we get
cosα=12\Rightarrow \cos \alpha = \dfrac{1}{2}
The cosine of the angle measuring π3\dfrac{\pi }{3} is 12\dfrac{1}{2}. This can be written as cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}.
From the equations cosα=12\cos \alpha = \dfrac{1}{2} and cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}, we get
cosα=cosπ3\Rightarrow \cos \alpha = \cos \dfrac{\pi }{3}
Therefore, we get
α=π3\Rightarrow \alpha = \dfrac{\pi }{3}
Next, we will simplify the equation sin1(12)=β{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta .
Rewriting the equation sin1(12)=β{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta , we get
sinβ=12\Rightarrow \sin \beta = \dfrac{1}{2}
The sine of the angle measuring π6\dfrac{\pi }{6} is 12\dfrac{1}{2}. This can be written as sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}.
From the equations sinβ=12\sin \beta = \dfrac{1}{2} and sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}, we get
sinβ=sinπ6\Rightarrow \sin \beta = \sin \dfrac{\pi }{6}
Therefore, we get
β=π6\Rightarrow \beta = \dfrac{\pi }{6}
Now, we will evaluate the given expression.
Substituting α=π3\alpha = \dfrac{\pi }{3} and β=π6\beta = \dfrac{\pi }{6} in the equation cos1(12)+2sin1(12)=α+2β{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta , we get
cos1(12)+2sin1(12)=π3+2(π6)\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + 2\left( {\dfrac{\pi }{6}} \right)
Simplifying the expression, we get
cos1(12)+2sin1(12)=π3+π3\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + \dfrac{\pi }{3}
Taking the L.C.M., we get
cos1(12)+2sin1(12)=π+π3\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{\pi + \pi }}{3}
Adding the like terms, we get
cos1(12)+2sin1(12)=2π3\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{2\pi }}{3}
\therefore The value of the given expression cos1(12)+2sin1(12){\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) is 2π3\dfrac{{2\pi }}{3}.
Thus, the correct option is option (c).

Note: We need to keep in mind the range of the trigonometric inverse functions. The range of cos1(x){\cos ^{ - 1}}\left( x \right) is [0,π]\left[ {0,\pi } \right] and the range of sin1(x){\sin ^{ - 1}}\left( x \right) is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right].
A common mistake is to use either cos5π3=12\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}, or sin5π6=12\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}, or both. This is because if cos5π3=12\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}, then cos1(12)=5π3{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{3}, which does not lie in the range of cos1(x){\cos ^{ - 1}}\left( x \right), that is [0,π]\left[ {0,\pi } \right]. Similarly, if sin5π6=12\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}, then sin1(12)=5π6{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}, which does not lie in the range of sin1(x){\sin ^{ - 1}}\left( x \right), that is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right].