Solveeit Logo

Question

Question: The value of \({{\cos }^{-1}}\left\\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\\}\) is e...

The value of {{\cos }^{-1}}\left\\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\\} is equal to
(a) 21\sqrt{2}-1
(b) π4\dfrac{\pi }{4}
(c) 3π4\dfrac{3\pi }{4}
(d) 00

Explanation

Solution

Hint: In inverse trigonometric functions, we have a formula cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x if xx is a principle angle i.e. x[0,π]x\in \left[ 0,\pi \right]. In this question, we will start from the innermost term and convert them to cos\cos or cos1{{\cos }^{-1}} functions and then use the above formula.

Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In the inverse trigonometric functions, we have the following formulas,
(1)cos1(cosx)=x\left( 1 \right){{\cos }^{-1}}\left( \cos x \right)=x
(2)cot1x=tan11x\left( 2 \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}
(3)2tan1x=tan1(2x1x2)\left( 3 \right)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)
In the question, we are required to solve {{\cos }^{-1}}\left\\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\\}. To solve this, we will start from the innermost function and apply the above listed formulas till we reach the outermost function. We will convert all the functions in the form of cos\cos or cos1{{\cos }^{-1}} with the use of the above listed formulas since the outermost function is a cos1{{\cos }^{-1}} function.
The innermost function is 2cot1(21)2{{\cot }^{-1}}\left( \sqrt{2}-1 \right). Using formula (2)\left( 2 \right), we get 2cot1(21)2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) equal to,
2cot1(21)=2tan11212{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}
Using formula (3)\left( 3 \right), we can write 2tan11212{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1} as,

& 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{1-{{\left( \dfrac{1}{\sqrt{2}-1} \right)}^{2}}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{2+1-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{3-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{2-2\sqrt{2}}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{-2\left( \sqrt{2}-1 \right)}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( -1 \right) \\\ \end{aligned}$$ From inverse trigonometric functions, we have ${{\tan }^{-1}}\left( -1 \right)=\dfrac{3\pi }{4}$. Hence, we can say from the above equation that $$2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}=\dfrac{3\pi }{4}$$. Since we had simplified $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ to $$2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}$$, so finally, we can say that $$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}$$. Since we got $$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}$$, substituting this in the expression given in the question i.e. ${{\cos }^{-1}}\left\\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\\}$, we get ${{\cos }^{-1}}\left\\{ \cos \left( \dfrac{3\pi }{4} \right) \right\\}$ . The angle inside the ${{\cos }^{-1}}\cos $ function is a primary angle since it is less that $\pi $ and greater than $0$. So, we can apply formula $\left( 1 \right)$ to ${{\cos }^{-1}}\left\\{ \cos \left( \dfrac{3\pi }{4} \right) \right\\}$. Using formula $\left( 1 \right)$, we get ${{\cos }^{-1}}\left\\{ \cos \left( \dfrac{3\pi }{4} \right) \right\\}=\dfrac{3\pi }{4}$. Hence, the answer is option (c). Note: One must know that the formula ${{\cos }^{-1}}\left( \cos x \right)=x$is valid only when $x$ is a primary angle i.e. $x\in \left[ 0,\pi \right]$. One cannot use this formula if $x$ is not a primary angle i.e. $x\notin \left[ 0,\pi \right]$.