Solveeit Logo

Question

Question: The value of \[{\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 14} \right)\] is:...

The value of cos1(cos12)sin1(sin14){\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 14} \right) is:
A. 2 - 2
B. 8π268\pi - 26
C. 4π+24\pi + 2
D. None of the above

Explanation

Solution

In this question, we will proceed by using the formulae cos(4πx)=cosx\cos \left( {4\pi - x} \right) = \cos x and sin(x4π)=sinx\sin \left( {x - 4\pi } \right) = \sin x. Then we will further simplify the given expression further by using the formula cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x and sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x.

Complete step by step answer:
Given expression is cos1(cos12)sin1(sin14)...................(1){\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 14} \right)...................\left( 1 \right)
We know that cos(4πx)=cosx\cos \left( {4\pi - x} \right) = \cos x and sin(x4π)=sinx\sin \left( {x - 4\pi } \right) = \sin x
By using these formulae in equation (1), we have
cos1(cos(4π12))sin1(sin(144π))\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right) - {\sin ^{ - 1}}\left( {\sin \left( {14 - 4\pi } \right)} \right)
Also, we know that cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x and sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x
By using these formulae in above expression, we get

(4π12)(144π) 4π1214+4π 8π26  \Rightarrow \left( {4\pi - 12} \right) - \left( {14 - 4\pi } \right) \\\ \Rightarrow 4\pi - 12 - 14 + 4\pi \\\ \therefore 8\pi - 26 \\\

Therefore, the value of the expression cos1(cos12)sin1(sin14){\cos ^{ - 1}}\left( {\cos 12} \right) - {\sin ^{ - 1}}\left( {\sin 14} \right) is 8π268\pi - 26.

So, the correct answer is “Option B”.

Note: In order to solve this type of question one should think about inverse trigonometric functions. In mathematics, inverse trigonometric functions are also called arcus functions or anti-trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are inverses of the sine, cosine, tangent, cotangent, secant and cosecant functions and are used to obtain an angle from any of the angle’s trigonometric ratios.