Question
Question: The value of \(C_{0} + 3C_{1} + 5C_{2} + ..... + (2n + 1)C_{n}\) is equal to...
The value of C0+3C1+5C2+.....+(2n+1)Cn is equal to
A
2n
B
2n+n.2n−1
C
2n(n+1)
D
None of these
Answer
2n(n+1)
Explanation
Solution
We have C0+3C1+5C2+.....+(2n+1)Cn
= ∑r=0n(2r+1)Cr=∑r=0n(2r+1)n⥂Cr= ∑r=0n2rnCr+∑r=0nnCr
= 2.∑r=1nr.rn.n−1⥂Cr−1+∑r=0nn⥂Cr
= 2n∑r=1nn−1Cr−1+∑r=0nnCr=2n[(1+1)n−1]+[1+1]n
= 2n.2n−1+2n=2n.[n+1].
Trick: Put n=1 in given expansion 1⥂C0+3.1⥂C1=1+3=4.
Which is given by option (3) 2n.(n+1)=21(1+1)=4.