Solveeit Logo

Question

Question: The value of c in Lagrange’s theorem for the function ƒ(x) = log sin x in the interval \(\left\lbra...

The value of c in Lagrange’s theorem for the function

ƒ(x) = log sin x in the interval [π6,5π6]\left\lbrack \frac{\pi}{6},\frac{5\pi}{6} \right\rbrack is –

A

π4\frac{\pi}{4}

B

π2\frac{\pi}{2}

C

2π3\frac{2\pi}{3}

D

None of these

Answer

π2\frac{\pi}{2}

Explanation

Solution

We have, ƒ(x) = log sin x

Ž ƒ¢(x) = 1sinx\frac{1}{\sin x} cos x = cot x

Clearly ƒ(x) is continuous and differentiable in [π6,5π6]\left\lbrack \frac{\pi}{6},\frac{5\pi}{6} \right\rbrack

Hence mean value theorem is applicable

\ There exist a real number c in (π6,5π6)\left( \frac{\pi}{6},\frac{5\pi}{6} \right) such that

ƒ¢(3) = ƒ(5π6)ƒ(π6)5π6π6\frac{ƒ\left( \frac{5\pi}{6} \right) - ƒ\left( \frac{\pi}{6} \right)}{\frac{5\pi}{6} - \frac{\pi}{6}}

Ž cot c = logsin5π6logsinπ623π\frac{{logsin}\frac{5\pi}{6} - {logsin}\frac{\pi}{6}}{\frac{2}{3}\pi}

Ž cot c = log12log122π3\frac{\log\frac{1}{2} - \log\frac{1}{2}}{\frac{2\pi}{3}} = 0

Ž c = π2\frac{\pi}{2}Ī(π6,5π6)\left( \frac{\pi}{6},\frac{5\pi}{6} \right).