Solveeit Logo

Question

Mathematics Question on Mean Value Theorem

The value of cc in Lagrange's theorem for the function f(x)=log(sinx)f(x) = \log (\sin \, x) in the interval [π6,5π6]\left[ \frac{\pi}{6} , \frac{5 \pi}{6} \right] is

A

π4\frac{\pi}{4}

B

π2\frac{\pi}{2}

C

2π3\frac{2\pi}{3}

D

None of these

Answer

π2\frac{\pi}{2}

Explanation

Solution

f(x)=log(sin(x))f(x) = \log (\sin(x)) is continuous in
[π6,5π6]\left[\frac{\pi}{6}, \frac{5\pi}{6}\right] and differentiable in (π6,5π6)\left(\frac{\pi}{6}, \frac{5\pi}{6}\right) as its derivative f(x)=1sinxcosx=cotxf'(x) = \frac{1}{\sin \,x} \cos \, x = \cot \, x
Now, f(π6)=log(sin(π6))=log(12)f \left(\frac{\pi}{6} \right) = \log \left( \sin \left(\frac{\pi}{6} \right)\right) = \log \left(\frac{1}{2} \right)
f(5π6)=logsin(5π6)=logsin(ππ6)=log(12)f \left(\frac{5 \pi}{6} \right) = \log \, \sin \left(\frac{5 \pi}{6} \right) = \log \, \sin \left( \pi - \frac{\pi}{6} \right) = \log \left( \frac{1}{2} \right)
Now, according to Lagrange's theorem, there exist a point c(π6,5π6)c \, \in \left( \frac{\pi}{6} , \frac{5\pi}{6} \right) such that
f(c)f(π6)f(5π6)(π65π6)f'\left(c\right) - \frac{f\left(\frac{\pi}{6} \right)-f\left(\frac{5\pi}{6}\right)}{\left(\frac{\pi }{6} - \frac{5\pi }{6}\right)}
cotc=0c=π2\Rightarrow \:\:\: \cot \, c = 0 \:\:\: \Rightarrow \: c = \frac{\pi}{2}