Solveeit Logo

Question

Mathematics Question on Mean Value Theorem

The value of cc from the Lagrange�s mean value theorem for which f(x)=25x2f(x) = \sqrt{25 - x^2} in [1,5][1,5], is

A

55

B

11

C

15\sqrt{15}

D

None of these

Answer

15\sqrt{15}

Explanation

Solution

It is clear that f(x)f (x) has a definite and unique value for each x[1,5].x \in [1, 5].
Thus, for every point in the interval [1,5],[1, 5], the value of f(x)f (x) exists.
So, f(x)f(x) is continuous in the interval [1, 5].
Also, f(x)=x25x2f(x) = \frac{ - x }{\sqrt{ 25 - x^2}}, which clearly exists for all x in an open interval (1, 5).
Hence, f(x)f'(x) is differentiable in (1,5)(1,5).
So, there must be a value c[1,5]c \in [1, 5] such that
f(c)=f(5)f(1)51=0244f'(c) = \frac{f(5) - f(1) }{5 -1} = \frac{ 0 - \sqrt{24}}{4}
=0264=62= \frac{ 0 - 2 \sqrt{6}}{4} = \frac{- \sqrt{6}}{2}
But f(c)=c25c2f'(c) = \frac{ - c}{\sqrt{25 - c^2}}
c25c2=62\therefore \frac{-c}{\sqrt{25 - c^{2}}} = - \frac{\sqrt{6}}{2}
4c2=6(25c2)\Rightarrow 4 c^{2} = 6 \left(25 - c^{2}\right)
4c2=1506c210c2=150\Rightarrow 4c^{2} = 150 - 6c^{2} \Rightarrow 10c^{2} = 150
c2=15c=±15\Rightarrow c^{2 } = 15 \Rightarrow c = \pm\sqrt{15}
c=15[1,5]\therefore c = \sqrt{15} \in\left[1,5\right]