Solveeit Logo

Question

Question: The value of \(c\) for which the set \(\left\\{ {\left. {\left( {x,y} \right)} \right|{x^2} + {y^2} ...

The value of cc for which the set \left\\{ {\left. {\left( {x,y} \right)} \right|{x^2} + {y^2} + 2x \leqslant 1} \right\\} \cap \left\\{ {\left. {\left( {x,y} \right)} \right|x - y + c \geqslant 0} \right\\} contains only one point in common is
{\text{A}}{\text{.}}\left( { - \infty , - 1} \right] \cup \left[ {3,\infty } \right) \\\ {\text{B}}{\text{.}}\left\\{ { - 1,3} \right\\} \\\ {\text{C}}{\text{.}}\left\\{ { - 3} \right\\} \\\ {\text{D}}{\text{.}}\left\\{ { - 1} \right\\} \\\

Explanation

Solution

Hint:To solve we have to solve the equation of circle and find radius and centre and then since we need only one point common, the line has to be a tangent to the circle and we find the value of cc using distance formula.

Complete step-by-step answer:

x2+y2+2x1 x2+y2+2x10  {x^2} + {y^2} + 2x \leqslant 1 \\\ {x^2} + {y^2} + 2x - 1 \leqslant 0 \\\

Now add 11 and subtract 11 on the L.H.S of the equation

x2+y2+2x1+110 (x+1)2+y22  \Rightarrow {x^2} + {y^2} + 2x - 1 + 1 - 1 \leqslant 0 \\\ \Rightarrow {\left( {x + 1} \right)^2} + {y^2} \leqslant 2 \\\

Centre of this circle is (1,0)\left( { - 1,0} \right) and radius is 2\sqrt 2

To contain only one point in common the line given should be a tangent to the circle or the perpendicular distance of line from the centre of the circle should be 2\sqrt 2 .

Now using the formula of perpendicular distance between a line xy+c0x - y + c \geqslant 0 and point (1,0)\left( { - 1,0} \right), we get

$

d = \dfrac{{\left| { - 1 - 0 + c} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2

\\

\dfrac{{\left| { - 1 + c} \right|}}{{\sqrt 2 }} = \sqrt 2 \\

\Rightarrow \left| {c - 1} \right| = 2 \\

\Rightarrow c - 1 = 2{\text{ or }}c - 1 = - 2 \\

\Rightarrow c = 3{\text{ or }}c = - 1 \\

\therefore c = 3, - 1 \\

$

Therefore, our answer is {\text{B}}{\text{.}}\left\\{ { - 1,3} \right\\}.

Note: The standard equation of circle is (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} where (h,k)\left( {h,k} \right) is centre and rr is the radius. Using this equation, we have to arrive at the centre and radius of the circle in the question.
Also, the perpendicular distance between a line Ax+By+C=0Ax + By + C = 0 and a point (x1,y1)\left( {{x_1},{y_1}} \right) is as follows:

d=Ax1+By1+CA2+B2d = \dfrac{{\left| {A{x_1} + B{y_1} + C} \right|}}{{\sqrt {{A^2} + {B^2}} }} . Now, using these formulas we arrive at our desired answer.