Solveeit Logo

Question

Mathematics Question on Combinations

The value of (300)(3010)(301)(3011)+(302)(3012).....+(3020)(3030)\binom{30}{0}\binom{30}{10}-\binom{30}{1}\binom{30}{11}+\binom{30}{2}\binom{30}{12} .....+ \binom{30}{20}\binom{30}{30} is where (nr)=nCr\binom{n}{r} = ^{n}C_{r}

A

(3010)\binom{30}{10}

B

(3015)\binom{30}{15}

C

(6030)\binom{60}{30}

D

(3110)\binom{31}{10}

Answer

(3010)\binom{30}{10}

Explanation

Solution

To find 30C030C1030C130C11+30C230C12....+30C2030C30^{30}C_{0} ^{30}C_{10} - ^{30}C_{1}^{30 }C_{11} +^{ 30} C_{2}^{30}C_{12} - ....+ ^{30}C_{20} ^{30}C_{30} We know that (1+x)30=30C0+30C1x+30C2x2\left(1 + x\right)^{30} = ^{30}C_{0} + ^{30}C_{1}x + ^{30}C_{2}x^{2} +....+30C20x20+....30C30x30....(1)+ .... + ^{30}C_{20}x^{20} + ....^{30}C_{30}x^{30} \quad....\left(1\right) (x1)30=30C0x3030C1x29+....+30C10x20\left(x - 1\right)^{30 }= ^{30}C_{0}x^{30} - ^{30}C_{1}x^{29 }+....+ ^{30}C_{10}x^{20} 30C11x19+30C12x18+....30C30x0....(2)- ^{30}C_{11}x^{19} + ^{30}C_{12}x^{18} +.... ^{30}C_{30}x^{0} \quad....\left(2\right) Multiplying eqn(1)eq^{n} \left(1\right) and (2)\left(2\right) and equating the coefficients of x20x^{20} on both sides, we get 30C10=30C030C1030C130C11+30C230C12....+30C2030C30^{30}C_{10} = ^{30}C_{0}^{30}C_{10 }-^{ 30} C_{1} ^{ 30}C_{11} + ^{30}C_{2} ^{30}C_{12}- ....+ ^{30}C_{20} ^{30}C_{30} \therefore\quad Re value is 30C10^{30}C_{10}