Question
Question: The value of $\begin{vmatrix} \sqrt{6} & 2i & 3+\sqrt{6} \\ \sqrt{12} & \sqrt{3}+\sqrt{8}i & 3\sqrt...
The value of
612182i3+8i2+12i3+632+6i27+2i is

an integer
a rational number
an irrational number
an imaginary number
an integer
Solution
The given determinant is: D=612182i3+8i2+12i3+632+6i27+2i
First, simplify the terms involving square roots: 12=4×3=23 18=9×2=32 8=4×2=22 27=9×3=33
Substitute these simplified terms into the determinant: D=623322i3+22i2+23i3+632+6i33+2i
Perform row operations to simplify the determinant. Apply R2→R2−2R1 and R3→R3−3R1. For R2→R2−2R1: The first element: 23−2(6)=23−12=23−23=0. The second element: (3+22i)−2(2i)=3+22i−22i=3. The third element: (32+6i)−2(3+6)=32+6i−32−12=6i−23. So, the new second row is (0,3,6i−23).
For R3→R3−3R1: The first element: 32−3(6)=32−18=32−32=0. The second element: (2+23i)−3(2i)=2+23i−23i=2. The third element: (33+2i)−3(3+6)=33+2i−33−18=2i−32. So, the new third row is (0,2,2i−32).
The determinant becomes: D=6002i323+66i−232i−32
Expand the determinant along the first column: D=6326i−232i−32−0+0
Now, evaluate the 2x2 determinant: 326i−232i−32=3(2i−32)−2(6i−23) =23i−36−(12i−26) =23i−36−(23i−26) =23i−36−23i+26 =−36+26=−6
Now, multiply by the factor 6: D=6×(−6)=−(6)2=−6.
The value of the determinant is -6.
Therefore, the answer is an integer.