Solveeit Logo

Question

Mathematics Question on Properties of Determinants

The value of log5729log35\[0.3em]log527log925.log35log275\[0.3em]log59log59=\begin{vmatrix} \log_5\,729 & \log_3\,5 \\\[0.3em] \log_5\,27 & \log_9\,25 \end{vmatrix}.\begin{vmatrix} \log_3\,5 & \log_{27}\,5 \\\[0.3em] \log_5\,9 & \log_5\,9 \end{vmatrix}=

A

11

B

66

C

log59\log_5\,9

D

log35.log59\log_3\,5. \log_5\,9

Answer

log35.log59\log_3\,5. \log_5\,9

Explanation

Solution

log5729log35\[0.3em]log527log925log35log275\[0.3em]log59log59\begin{vmatrix} \log_5\,729 & \log_3\,5 \\\[0.3em] \log_5\,27 & \log_9\,25 \end{vmatrix}\begin{vmatrix} \log_3\,5 & \log_{27}\,5 \\\[0.3em] \log_5\,9 & \log_5\,9 \end{vmatrix}
= log536log35\[0.3em]log533log3252log35log335\[0.3em]log533log3252\begin{vmatrix} \log_5\,3^6 & \log_3\,5 \\\[0.3em] \log_5\,3^3& \log_{32}\,5^2 \end{vmatrix}\begin{vmatrix} \log_3\,5 & \log_{3}\,3^5 \\\[0.3em] \log_5\,3^3 & \log_{32}\,5^2 \end{vmatrix}
6log53log5\[0.3em]3log5322log35log3513log335\[0.3em]2log532log53\begin{vmatrix} 6 \, \log_5\,3 & \log\,5 \\\[0.3em] 3\, \log_5\,3 & \frac{2}{2} \log_3\,5 \end{vmatrix}\begin{vmatrix} \log_3\,5 & \frac{1}{3}\log_{3}\,3^5 \\\[0.3em] 2\, \log_5\,3 & 2\,\log_5\,3 \end{vmatrix}
6log53log5\[0.3em]3log5322log35log3513log35\[0.3em]2log532log53\begin{vmatrix} 6 \, \log_5\,3 & \log\,5 \\\[0.3em] 3\, \log_5\,3 & \frac{2}{2} \log_3\,5 \end{vmatrix}\begin{vmatrix} \log_3\,5 & \frac{1}{3}\log_{3}5 \\\[0.3em] 2\, \log_5\,3 & 2\,\log_5\,3 \end{vmatrix}
(63)(223)=(3)(43)=4\left(6-3\right)\left(2- \frac{2}{3}\right)=\left(3\right)\left(\frac{4}{3}\right)=4
= log35log581\log_3\, 5 \, \log_5 \, 81
(log35log581)=log35log534=4log35log53(\log_3 \, 5 \, \log_5 \, 81) \, =\log_3 \, 5\, \log_ 5\, 3^4 = 4\, log_3 \, 5\, \log_5 \, 3
= 4(1)=44(1) = 4