Solveeit Logo

Question

Question: The value of b such that scalar product of the vectors \(( \mathbf { i } + \mathbf { j } + \mathbf {...

The value of b such that scalar product of the vectors (i+j+k)( \mathbf { i } + \mathbf { j } + \mathbf { k } ) with the unit vector parallel to the sum of the vectors (2i+4j5k)( 2 \mathbf { i } + 4 \mathbf { j } - 5 \mathbf { k } ) and (bi+2j+3k)( b \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) is 1, is

A

– 2

B

– 1

C

0

D

1

Answer

1

Explanation

Solution

Parallel vector =(2+b)i+6j2k= ( 2 + b ) \mathbf { i } + 6 \mathbf { j } - 2 \mathbf { k }

Unit vector =(2+b)i+6j2kb2+4b+44= \frac { ( 2 + b ) \mathbf { i } + 6 \mathbf { j } - 2 \mathbf { k } } { \sqrt { b ^ { 2 } + 4 b + 44 } }

According to the condition, 1=(2+b)+62b2+4b+441 = \frac { ( 2 + b ) + 6 - 2 } { \sqrt { b ^ { 2 } + 4 b + 44 } }

b2+4b+44=b2+12b+36\Rightarrow b ^ { 2 } + 4 b + 44 = b ^ { 2 } + 12 b + 36 8b=8b=1\Rightarrow 8 b = 8 \Rightarrow b = 1