Question
Question: The value of \(\alpha \) for which \(4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}\) , is....
The value of α for which 4α−1∫2e−α∣x∣dx=5 , is.
Solution
Hint: Start by simplification of the definite integral using the property a∫bf(x)dx=a∫cf(x)dx+c∫bf(x)dx to write −1∫2e−α∣x∣dx=−1∫0e−α∣x∣dx+0∫2e−α∣x∣dx and use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0). After simplification, use the formula ∫ekxdx=kekx+c .
Complete step-by-step answer:
Before starting the solution, let us discuss the important properties of definite integration.
Some important properties are:
a∫bf(x)dx=a∫bf(a+b−x)dx
a∫bf(x)dx=a∫cf(x)dx+c∫bf(x)dx
Now let us start with the integral given in the above question.
4α−1∫2e−α∣x∣dx=5
Using the property a∫bf(x)dx=a∫cf(x)dx+c∫bf(x)dx , we get
4α−1∫0e−α∣x∣dx+4α0∫2e−α∣x∣dx=5
Now if we use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0), we get
4α−1∫0e−α(−x)dx+4α0∫2e−αxdx=5
⇒4α−1∫0eαxdx+4α0∫2e−αxdx=5
Now, if we use the formula ∫ekxdx=kekx+c , we get
4ααeαx−10+4α−αe−αx02=5
⇒4α(αe0−e−α)−4α(αe−2α−e0)=5
⇒4e0−4e−α+4e0−4e−2α=5
Now, we know that e0=1 .
4−4e−α+4−4e−2α=5
⇒−4e−α−4e−2α=−3
⇒4e−2α+4e−α−3=0
⇒4e−2α+6e−α−2e−α−3=0
⇒(2e−α−1)(2e−α+3)=0
So, either (2e−α−1)=0 else (2e−α+3)=0 . But (2e−α+3) cannot be zero as e to the power some constant can never be negative.
∴2e−α−1=0
e−α=21
Now we will take log of both sides.