Solveeit Logo

Question

Question: The value of \(a\cos\theta + b\sin\theta\)lies between...

The value of acosθ+bsinθa\cos\theta + b\sin\thetalies between

A

aba - band a+ba + b

B

aaand bb

C

(a2+b2)- (a^{2} + b^{2}) and (a2+b2)(a^{2} + b^{2})

D

a2+b2- \sqrt{a^{2} + b^{2}}and a2+b2\sqrt{a^{2} + b^{2}}

Answer

a2+b2- \sqrt{a^{2} + b^{2}}and a2+b2\sqrt{a^{2} + b^{2}}

Explanation

Solution

acosθ+bsinθ=a2+b2a \cos \theta + b \sin \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } (acosθa2+b2+bsinθa2+b2)\left( \frac{a\cos\theta}{\sqrt{a^{2} + b^{2}}} + \frac{b\sin\theta}{\sqrt{a^{2} + b^{2}}} \right)

=a2+b2sin(θ+φ)= \sqrt{a^{2} + b^{2}}\sin(\theta + \varphi)

Since, 1<sin(θ+φ)<1,–1 < \sin(\theta + \varphi) < 1,

Then a2+b2<sin(θ+φ)<a2+b2- \sqrt{a^{2} + b^{2}} < \sin(\theta + \varphi) < \sqrt{a^{2} + b^{2}}.