Solveeit Logo

Question

Question: The value of ‘a’ so that the volume of parallelopiped formed by \(\mathbf { i } + a \mathbf { j } +...

The value of ‘a’ so that the volume of parallelopiped formed by i+aj+k\mathbf { i } + a \mathbf { j } + \mathbf { k } ; j+ak\mathbf { j } + a \mathbf { k } and ai+ka \mathbf { i } + \mathbf { k } becomes minimum is

A

– 3

B

3

C

1/31 / \sqrt { 3 }

D

3\sqrt { 3 }

Answer

1/31 / \sqrt { 3 }

Explanation

Solution

Volume of the parallelepiped

V = = (i+aj+k){(j+ak)×(ai+k)}( \mathbf { i } + a \mathbf { j } + \mathbf { k } ) \cdot \{ ( \mathbf { j } + a \mathbf { k } ) \times ( a \mathbf { i } + \mathbf { k } ) \}

= (i+aj+k){i+a2jak)}\left. ( \mathbf { i } + a \mathbf { j } + \mathbf { k } ) \cdot \left\{ \mathbf { i } + a ^ { 2 } \mathbf { j } - a \mathbf { k } \right) \right\} = 1+a3a1 + a ^ { 3 } - a

dVda\frac { d V } { d a } = 3a213 a ^ { 2 } - 1 ; d2Vda2=6a\frac { d ^ { 2 } V } { d a ^ { 2 } } = 6 a ; dVda=03a21=0a=±13\frac { d V } { d a } = 0 \Rightarrow 3 a ^ { 2 } - 1 = 0 \Rightarrow a = \pm \frac { 1 } { \sqrt { 3 } }At a=13,d2Vda2=63>0a = \frac { 1 } { \sqrt { 3 } } , \frac { d ^ { 2 } V } { d a ^ { 2 } } = \frac { 6 } { \sqrt { 3 } } > 0

\therefore V is minimum at a=13a = \frac { 1 } { \sqrt { 3 } }