Solveeit Logo

Question

Question: The value of \(A = \frac{\pi}{3},B = \frac{\pi}{6}\) satisfying the given equation \(2 - 2\cos^{2}\...

The value of A=π3,B=π6A = \frac{\pi}{3},B = \frac{\pi}{6} satisfying the given equation

22cos2θ+3cosθ+1=02 - 2\cos^{2}\theta + \sqrt{3}\cos\theta + 1 = 0 = 2, is .

A

\Rightarrow

B

2cos2θ3cosθ3=02\cos^{2}\theta - \sqrt{3}\cos\theta - 3 = 0

C

\Rightarrow

D

cosθ=3±3+244=3(1±3)4=3(12)\cos\theta = \frac{\sqrt{3} \pm \sqrt{3 + 24}}{4} = \frac{\sqrt{3}(1 \pm 3)}{4} = \sqrt{3}\left( - \frac{1}{2} \right)

Answer

\Rightarrow

Explanation

Solution

x=bcx = bc.