Solveeit Logo

Question

Mathematics Question on Addition of Vectors

The value of aa for which the volume of parallelepiped formed by the vectors i^+aj^+k^j^+ak^\hat {i}+a\hat{j} + \hat{k} \,\, \hat{j}+a\hat{k} and ai^+k^a\hat{i}+\hat{k} is minimum, is

A

13\frac{1}{\sqrt{3}}

B

33

C

3-3

D

11

Answer

13\frac{1}{\sqrt{3}}

Explanation

Solution

The correct answer is A:13\frac{1}{\sqrt{3}}
Given that;
The volume of parallelopiped is given by[a  b  c][\vec{a}\space\vec{b}\space\vec{c}];
Where, a=i^+aj^+k^\vec{a}=\hat{i}+a\hat{j}+\hat{k}
b=j^+ak^\vec{b}=\hat{j}+a\hat{k}
c=ai^+k^\vec{c}=a\hat{i}+\hat{k}
\therefore Putting values we can make 1a1\01a\a01\begin{vmatrix}1&a&1\\\0&1&a\\\a&0&1\end{vmatrix}
=1(10)a(0a2)+1(0a)=1(1-0)-a(0-a^2)+1(0-a)
=1+a3a=1+a^3-a
\therefore Volume (v)=1+a3a1+a^3-a
The question asks for the minimum value of ‘a’
So, dvda=dda(1+a3a)\frac{dv}{da}=\frac{d}{da}(1+a^3-a)
3a21=03a^2-1=0
3a2=13a^2=1
a=13a=\frac{1}{\sqrt{3}}
parallelopiped