Solveeit Logo

Question

Question: The value of a for which the function \((a + 2)x^{3} - 3ax^{2} + 9ax - 1\) decrease monotonically t...

The value of a for which the function

(a+2)x33ax2+9ax1(a + 2)x^{3} - 3ax^{2} + 9ax - 1 decrease monotonically throughout for all real x, are

A

a<2a < - 2

B

a>2a > - 2

C

3<a<0- 3 < a < 0

D

<a3- \infty < a \leq - 3

Answer

<a3- \infty < a \leq - 3

Explanation

Solution

If f(x)=(a+2)x33ax2+9ax1f(x) = (a + 2)x^{3} - 3ax^{2} + 9ax - 1 decreases monotonically for all xR,x \in R, then f(x)0f^{'}(x) \leq 0 for all xRx \in R

3(a+2)x26ax+9a03(a + 2)x^{2} - 6ax + 9a \leq 0 for all xRx \in R

(a+2)x22ax+3a0(a + 2)x^{2} - 2ax + 3a \leq 0 for all xRx \in R

a+2<0a + 2 < 0 and discriminant 0\leq 0

a<2a < - 2 and 8a224a0- 8a^{2} - 24a \leq 0

a<2a < - 2 and a(a+3)0a(a + 3) \geq 0a<2a < - 2 and a3a \leq - 3 or a0a \geq 0

a3a \leq - 3<a3- \infty < a \leq - 3