Question
Question: The value of a for which system of equations, \[{a^3}x + {(a + 1)^3}y + {(a + 2)^3}\;z = 0,\;\] \[ax...
The value of a for which system of equations, a3x+(a+1)3y+(a+2)3z=0, ax+(a+1)y+(a+2)z=0, x+y+z=0 has non zero solutions is :
A) -1
B) 0
C) 1
D) 2
Solution
The determinant of a 3 x 3 matrix A,
A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)
is defined as
A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = ({a_{11}}{a_{22}}{a_{33}} + {a_{12}}{a_{23}}{a_{31}} + {a_{13}}{a_{21}}{a_{32}}) - ({a_{31}}{a_{22}}{a_{13}} + {a_{32}}{a_{23}}{a_{11}} + {a_{33}}{a_{21}}{a_{12}})
An easy method for calculating 3 X 3 determinants is found by rearranging and factoring the terms given above to get
\Rightarrow \left[ {\left\{ { - {a^3} + {{(a + 2)}^3}} \right\} + 2{{(a + 1)}^3} - 2{{(a + 2)}^3}} \right] = 0 \\
\Rightarrow \left[ { - {a^3} - {{(a + 2)}^3} + 2{{(a + 1)}^3}} \right] = 0 \\
\Rightarrow \left[ { - {a^3} - ({a^3} + 8 + 6{a^2} + 12a) + 2{a^3} + 2 + 6{a^2} + 6a} \right] = 0 \\
\Rightarrow \left[ { - {a^3} - {a^3} - 8 - 6{a^2} - 12a + 2{a^3} + 2 + 6{a^2} + 6a} \right] = 0 \\
\Rightarrow \left[ { - 6 - 6a} \right] = 0 \\
\Rightarrow a = - 1 \\