Solveeit Logo

Question

Question: The value of $9999 \int_{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^2})^{100}}$ is _____....

The value of 99990dx(x+1+x2)1009999 \int_{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^2})^{100}} is _____.

Answer

100

Explanation

Solution

The problem requires evaluating a definite integral involving the term x+1+x2x+\sqrt{1+x^2}. This form suggests using a hyperbolic substitution.

Let x=sinhtx = \sinh t.
Then, dx=coshtdtdx = \cosh t \, dt.
Also, 1+x2=1+sinh2t=cosh2t=cosht\sqrt{1+x^2} = \sqrt{1+\sinh^2 t} = \sqrt{\cosh^2 t} = \cosh t (since x0x \ge 0, t0t \ge 0, so cosht>0\cosh t > 0).

Substitute these into the term (x+1+x2)(x+\sqrt{1+x^2}):
x+1+x2=sinht+cosht=etx+\sqrt{1+x^2} = \sinh t + \cosh t = e^t.

Now, change the limits of integration:
When x=0x=0, sinht=0    t=0\sinh t = 0 \implies t=0.
When xx \to \infty, sinht    t\sinh t \to \infty \implies t \to \infty.

Substitute everything into the integral I=0dx(x+1+x2)100I = \int_{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^2})^{100}}:
I=0coshtdt(et)100I = \int_{0}^{\infty} \frac{\cosh t \, dt}{(e^t)^{100}}
I=0coshte100tdtI = \int_{0}^{\infty} \frac{\cosh t}{e^{100t}} \, dt
I=0coshte100tdtI = \int_{0}^{\infty} \cosh t \cdot e^{-100t} \, dt

Recall the definition of cosht=et+et2\cosh t = \frac{e^t + e^{-t}}{2}.
I=0et+et2e100tdtI = \int_{0}^{\infty} \frac{e^t + e^{-t}}{2} e^{-100t} \, dt
I=120(ete100t+ete100t)dtI = \frac{1}{2} \int_{0}^{\infty} (e^t \cdot e^{-100t} + e^{-t} \cdot e^{-100t}) \, dt
I=120(e99t+e101t)dtI = \frac{1}{2} \int_{0}^{\infty} (e^{-99t} + e^{-101t}) \, dt

Now, integrate term by term:
eatdt=1aeat\int e^{-at} \, dt = -\frac{1}{a} e^{-at}.
I=12[199e99t1101e101t]0I = \frac{1}{2} \left[ -\frac{1}{99} e^{-99t} - \frac{1}{101} e^{-101t} \right]_{0}^{\infty}

Evaluate the definite integral using the limits:
As tt \to \infty, e99t0e^{-99t} \to 0 and e101t0e^{-101t} \to 0.
At t=0t=0, e99(0)=1e^{-99(0)} = 1 and e101(0)=1e^{-101(0)} = 1.

I=12[(00)(199(1)1101(1))]I = \frac{1}{2} \left[ (0 - 0) - \left( -\frac{1}{99}(1) - \frac{1}{101}(1) \right) \right]
I=12[0(1991101)]I = \frac{1}{2} \left[ 0 - \left( -\frac{1}{99} - \frac{1}{101} \right) \right]
I=12(199+1101)I = \frac{1}{2} \left( \frac{1}{99} + \frac{1}{101} \right)
I=12(101+9999×101)I = \frac{1}{2} \left( \frac{101 + 99}{99 \times 101} \right)
I=12(2009999)I = \frac{1}{2} \left( \frac{200}{9999} \right)
I=1009999I = \frac{100}{9999}

The question asks for the value of 99990dx(x+1+x2)1009999 \int_{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^2})^{100}}, which is 9999I9999 I.
9999I=9999×1009999=1009999 I = 9999 \times \frac{100}{9999} = 100.