Solveeit Logo

Question

Question: The value of \((81)^{\sin^{2}\pi/6} + (81)^{\cos^{2}\pi/6} = 30\) in between \((81)^{1/4} + (81)^{3/...

The value of (81)sin2π/6+(81)cos2π/6=30(81)^{\sin^{2}\pi/6} + (81)^{\cos^{2}\pi/6} = 30 in between (81)1/4+(81)3/4=30(81)^{1/4} + (81)^{3/4} = 30and tanθ=3=tanπ3θ=nπ+π3\tan\theta = \sqrt{3} = \tan\frac{\pi}{3} \Rightarrow \theta = n\pi + \frac{\pi}{3}and satisfying the equation π<θ<0- \pi < \theta < 0is equal to.

A

n=1n = - 1and θ=π+π3=2π3;k 4π6\theta = - \pi + \frac{\pi}{3} = \frac{- 2\pi}{3}; ⥂ k\ \frac{- 4\pi}{6}

B

tanθ+13=0\tan\theta + \frac{1}{\sqrt{3}} = 0and tanθ=13\tan\theta = - \frac{1}{\sqrt{3}}

C

\becauseand θ\theta

D

00{^\circ}and 360360{^\circ}

Answer

00{^\circ}and 360360{^\circ}

Explanation

Solution

We have, 101011sin2θcos2θ1+4sin4θ=0\left| \begin{matrix} 1 & 0 & - 1 \\ 0 & 1 & - 1 \\ \sin^{2}\theta & \cos^{2}\theta & 1 + 4\sin 4\theta \end{matrix} \right| = 0 or \Rightarrow

1+4sin4θ+cos2θ+sin2θ=01 + 4\sin 4\theta + \cos^{2}\theta + \sin^{2}\theta = 0 R1)R_{1}) lies in between 4sin4θ=24\sin 4\theta = - 2 and sin4θ=12\sin 4\theta = \frac{- 1}{2}

\therefore 11π6\frac{11\pi}{6} and 0<4θ<2π0 < 4\theta < 2\pi.