Solveeit Logo

Question

Question: The value of \[8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203...

The value of 8184[sin12sin48sin54]+181[tan203+tan22+tan203tan22]8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] is equal to.

Explanation

Solution

Hint: Start with the first bracket, apply the property 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right)-\cos \left( {A + B} \right) in the first two terms. After this, apply the property tanA+tanB=tan(A+B)(1tanAtanB)\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right) in the first two terms of the second bracket. Simplify by putting the trigonometric values.

Complete step-by-step answer:
Consider the given expression,
8184[sin12sin48sin54]+181[tan203+tan22+tan203tan22]8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]
We will first simplify the first bracket by using the trigonometric identity 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right) on the first two terms.
Thus, we get,

2×4092[sin12sin48sin54]+181[tan203+tan22+tan203tan22] 4092[(2sin48sin12)sin54]+181[tan203+tan22+tan203tan22] 4092[cos(4812)cos(48+12)]sin54+181[tan203+tan22+tan203tan22] 4092[cos(36)cos(60)]sin54+181[tan203+tan22+tan203tan22]  \Rightarrow 2 \times 4092\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\\

Now, we know that sin(9054)=cos36\sin \left( {90^\circ - 54^\circ } \right) = \cos 36^\circ
We will put this value in the above obtained expression,
Thus, we get,
4092[cos(36)cos(60)]cos36+181[tan203+tan22+tan203tan22]\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]
Next, we will simplify the second bracket by using the trigonometric identity tanA+tanB=tan(A+B)(1tanAtanB)\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right) on the first two terms,
Thus, we have,

4092[cos(36)cos(60)]cos36+181[tan(203+22)(1tan203tan22)+tan203tan22] 4092[cos(36)cos(60)]cos36+181[tan(225)(1tan203tan22)+tan203tan22]  \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {203^\circ + 22^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {225^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\\

Since, we know that tan(225)=1\tan \left( {225^\circ } \right) = 1 and cos(60)=12\cos \left( {60^\circ } \right) = \dfrac{1}{2}
Hence, put the values in the derived form,
Thus, we get,

4092[cos(36)12]cos36+181[1(1tan203tan22)+tan203tan22] 4092[cos(36)12]cos36+181[1tan203tan22+tan203tan22] 4092[cos(36)12]cos36+181[1]  \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1 - \tan 203^\circ \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\\ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ 1 \right] \\\

Since, we know that cos(36)=5+14\cos \left( {36^\circ } \right) = \dfrac{{\sqrt 5 + 1}}{4},
Therefore, substitute the value in the obtained above expression,
We get,

4092[5+1412](5+14)+181 4092[(5+14)212(5+14)]+181 4092[116(1+5+25)18(1+5)]+181 409216[(6+25)225]+181 1023+181 1204  \Rightarrow 4092\left[ {\dfrac{{\sqrt 5 + 1}}{4} - \dfrac{1}{2}} \right]\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) + 181 \\\ \Rightarrow 4092\left[ {{{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2} - \dfrac{1}{2}\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)} \right] + 181 \\\ \Rightarrow 4092\left[ {\dfrac{1}{{16}}\left( {1 + 5 + 2\sqrt 5 } \right) - \dfrac{1}{8}\left( {1 + \sqrt 5 } \right)} \right] + 181 \\\ \Rightarrow \dfrac{{4092}}{{16}}\left[ {\left( {6 + 2\sqrt 5 } \right) - 2 - 2\sqrt 5 } \right] + 181 \\\ \Rightarrow 1023 + 181 \\\ \Rightarrow 1204 \\\

Hence, the value of the given expression is equal to 1204.

Note: We can find the value of cos(36)\cos \left( {36^\circ } \right) by deriving its value in rough or we can remember the value also. The trigonometric identities 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right) and tanA+tanB=tan(A+B)(1tanAtanB)\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right) should be used to simplify the given expression.