Solveeit Logo

Question

Question: The value of \(6(\sin^{6}\theta + \cos^{6}\theta) - 9(\sin^{4}\theta + \cos^{4}\theta) + 4\) is...

The value of 6(sin6θ+cos6θ)9(sin4θ+cos4θ)+46(\sin^{6}\theta + \cos^{6}\theta) - 9(\sin^{4}\theta + \cos^{4}\theta) + 4 is

A

–3

B

0

C

1

D

3

Answer

1

Explanation

Solution

6(sin6θ+cos6θ)9(sin4θ+cos4θ)+46(\sin^{6}\theta + \cos^{6}\theta) - 9(\sin^{4}\theta + \cos^{4}\theta) + 4

=6[(sin2θ+cos2θ)33sin2θcos2θ(sin2θ+cos2θ)]9[(sin2θ+cos2θ)22sin2θcos2]+4= 6\lbrack(\sin^{2}\theta + \cos^{2}\theta)^{3} - 3\sin^{2}\theta\cos^{2}\theta(\sin^{2}\theta + \cos^{2}\theta)\rbrack - 9\lbrack(\sin^{2}\theta + \cos^{2}\theta)^{2} - 2\sin^{2}\theta\cos^{2}\rbrack + 4

=6[13sin2θcos2θ]9[12sin2θcos2θ]+4=69+4=1= 6\lbrack 1 - 3\sin^{2}\theta\cos^{2}\theta\rbrack - 9\lbrack 1 - 2\sin^{2}\theta\cos^{2}\theta\rbrack + 4 = 6 - 9 + 4 = 1.