Solveeit Logo

Question

Question: The value of \(5\cos\theta + 3\cos(\theta + \frac{\pi}{3}) + 3\) lies between...

The value of 5cosθ+3cos(θ+π3)+35\cos\theta + 3\cos(\theta + \frac{\pi}{3}) + 3 lies between

A

4- 4and 4

B

4- 4 and 6

C

4- 4and 8

D

4- 4 and 10

Answer

4- 4 and 10

Explanation

Solution

5cosθ+3cos(θ+π3)+35\cos\theta + 3\cos(\theta + \frac{\pi}{3}) + 3

=5cosθ+3[cosθcosπ3sinθ.sinπ3]+35\cos\theta + 3\lbrack\cos\theta\cos\frac{\pi}{3} - \sin\theta.\sin\frac{\pi}{3}\rbrack + 3

=[5cosθ+32cosθ332sinθ]+3\lbrack 5\cos\theta + \frac{3}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta\rbrack + 3

= (132cosθ332sinθ)+3\left( \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta \right) + 3

\because (132)2+(332)2(132cosθ332sinθ)(132)2+(332)2- \sqrt{\left( \frac{13}{2} \right)^{2} + \left( \frac{3\sqrt{3}}{2} \right)^{2}} \leq \left( \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta \right) \leq \sqrt{\left( \frac{13}{2} \right)^{2} + \left( \frac{3\sqrt{3}}{2} \right)^{2}}

7(132cosθ332sinθ)+7- 7 \leq \left( \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta \right) \leq + 7\therefore 7+3(132cosθ332sinθ)+37+3- 7 + 3 \leq \left( \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta \right) + 3 \leq 7 + 3

4(132cosθ332sinθ)+310- 4 \leq \left( \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta \right) + 3 \leq 10So, the value lies

between – 4 and 10.