Solveeit Logo

Question

Question: The value of \[(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4...

The value of (4cos291)(4cos2811)(4cos2271)(4cos22431)(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1) is
A.1
B.-1
C.2
D.None of these

Explanation

Solution

We have given (4cos291)(4cos2811)(4cos2271)(4cos22431)(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)
To find the value of above trigonometric expressions first, we have to use this trigonometric identity (4cos2θ1)(4{\cos ^2}\theta - 1)

Complete step-by-step answer:
The trigonometric identity is (4cos2θ1)(4{\cos ^2}\theta - 1) =sin3θsinθ\dfrac{{\sin 3\theta }}{{\sin \theta }}
Here is the further explanation of this trigonometric identity or we can say the proof of this formula
In the first part, we use this identity where R.H.S. Sin3θsinθ=3sinθ4sin3θsinθ\dfrac{{\operatorname{Sin} 3\theta }}{{\sin \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta }}{{\sin \theta }}
In the next part, we take out the common part and it will cancel with the denominator
=sinθ(34sin2θ)sinθ=34sin2θ= \dfrac{{\sin \theta (3 - 4{{\sin }^2}\theta )}}{{\sin \theta }} = 3 - 4{\sin ^2}\theta
So, In this area, we use another identity of trigonometry
=34(1cos2θ)= 3 - 4(1 - {\cos ^2}\theta ) [∴ sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta ]
So, here we open the brackets by multiply 4 with both digits
=34+4cos2θ= 3 - 4 + 4{\cos ^2}\theta
=1+4cos2θ =4cos2θ1  = - 1 + 4{\cos ^2}\theta \\\ = 4{\cos ^2}\theta - 1 \\\ = L.H.S.
(4cos2θ1)(4{\cos ^2}\theta - 1) =sin3θsinθ\dfrac{{\sin 3\theta }}{{\sin \theta }}
For θ=9\theta = {9^ \circ }
4cos291=sin3×9sin9=sin27sin9.......(i)4{\cos ^2}{9^ \circ } - 1 = \dfrac{{\sin 3 \times {9^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}}.......(i)
For θ=27\theta = {27^ \circ }
4cos2271=sin3×27sin27=sin81sin27.........(ii)4{\cos ^2}{27^ \circ } - 1 = \dfrac{{\sin 3 \times {{27}^ \circ }}}{{\sin {{27}^ \circ }}} = \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}}.........(ii)
θ=81\theta = {81^ \circ }
4cos2811=sin3×81sin81=sin243sin81.........(iii)4{\cos ^2}{81^ \circ } - 1 = \dfrac{{\sin 3 \times {{81}^ \circ }}}{{\sin {{81}^ \circ }}} = \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}}.........(iii)
θ=243\theta = {243^ \circ }
4cos22431=sin3×243sin243=sin729sin243.........(iv)4{\cos ^2}{243^ \circ } - 1 = \dfrac{{\sin 3 \times {{243}^ \circ }}}{{\sin {{243}^ \circ }}} = \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}}.........(iv)
Multiplying (i) (ii) (iii) and (iv)
(4cos291)(4cos2811)(4cos2271)(4cos22431)(4{\cos ^2}{9^ \circ } - 1)(4{\cos ^2}{81^ \circ } - 1)(4{\cos ^2}{27^ \circ } - 1)(4{\cos ^2}{243^ \circ } - 1)
= $$$$

\dfrac{{\sin {{27}^ \circ }}}{{\sin {9^ \circ }}} \times \dfrac{{\sin {{81}^ \circ }}}{{\sin {{27}^ \circ }}} \times \dfrac{{\sin {{243}^ \circ }}}{{\sin {{81}^ \circ }}} \times \dfrac{{\sin {{729}^ \circ }}}{{\sin {{243}^ \circ }}} \\\ = \dfrac{{\sin {{729}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {{(720 + 9)}^ \circ }}}{{\sin {9^ \circ }}} = \dfrac{{\sin {9^ \circ }}}{{\sin {9^ \circ }}} = 1 \\\ $$ $$\because \sin (2\pi + \theta ) = \sin \theta $$ **Option A is correct.** **Note:** Identities involving only angles are known as trigonometric identities , related both the sides and angles of a given triangle. Periodic function: On changing a variable θ to θ +α. α being the least positive constant, the value of a function of θ remains unchanged, the function is said to be periodic and α is called the periodic function. $\sin (\theta + 2\pi ) = \sin \theta $