Solveeit Logo

Question

Question: The value of \[4+5{{\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2...

The value of 4+5(12+i32)334+3(12i32)3354+5{{\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right)}^{335}} is
(a) 1i31-i\sqrt{3}
(b) 1+i3-1+i\sqrt{3}
(c) 43i4\sqrt{3}i
(d) i3-i\sqrt{3}

Explanation

Solution

Hint: We will first convert both the complex terms in polar forms using x+iy=r(cosθ+isinθ)x+iy=r(\cos \theta +i\sin \theta ) and we will use the formula (cosθ+isinθ)n=cos(nθ)+isin(nθ){{(\cos \theta +i\sin \theta )}^{n}}=\cos (n\theta )+i\sin (n\theta ) to simplify the expression. And then we will use the basic trigonometric identities a few times to get our answer.

Complete step-by-step answer:
As we know, every complex number can be converted into polar form.
x+iy=r(cosθ+isinθ)........(1)x+iy=r(\cos \theta +i\sin \theta )........(1)
And also we know that (cosθ+isinθ)n=cos(nθ)+isin(nθ)......(2){{(\cos \theta +i\sin \theta )}^{n}}=\cos (n\theta )+i\sin (n\theta )......(2)
The expression mentioned in the question is 4+5(12+i32)334+3(12i32)335.......(3)4+5{{\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)}^{334}}+3{{\left( -\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right)}^{335}}.......(3)
Now first we will convert the terms in sin and cos using equation (1) in equation (3) and hence we get,
4+5(cos(ππ3)+isin(ππ3))334+3(cos((ππ3))isin((ππ3)))335.......(4)\Rightarrow 4+5{{\left( \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right)}^{334}}+3{{\left( \cos \left( -\left( \pi -\dfrac{\pi }{3} \right) \right)-i\sin \left( -\left( \pi -\dfrac{\pi }{3} \right) \right) \right)}^{335}}.......(4)
Now subtracting the terms in the brackets and simplifying in equation (4) we get,
4+5(cos(2π3)+isin(2π3))334+3(cos(2π3)isin(2π3))335.......(5)\Rightarrow 4+5{{\left( \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right)}^{334}}+3{{\left( \cos \left( -\dfrac{2\pi }{3} \right)-i\sin \left( -\dfrac{2\pi }{3} \right) \right)}^{335}}.......(5)
We will now apply the formula from equation (2) in equation (5) and hence we get,
4+5(cos(2π3×334)+isin(2π3×334))+3(cos(2π3×335)isin(2π3×335)).......(6)\Rightarrow 4+5\left( \cos \left( \dfrac{2\pi }{3}\times 334 \right)+i\sin \left( \dfrac{2\pi }{3}\times 334 \right) \right)+3\left( \cos \left( -\dfrac{2\pi }{3}\times 335 \right)-i\sin \left( -\dfrac{2\pi }{3}\times 335 \right) \right).......(6)
Now again simplifying all the terms and rearranging in equation (6) we get,
4+5(cos(668π3)+isin(668π3))+3(cos(670π3)isin(670π3)).......(7)\Rightarrow 4+5\left( \cos \left( \dfrac{668\pi }{3} \right)+i\sin \left( \dfrac{668\pi }{3} \right) \right)+3\left( \cos \left( -\dfrac{670\pi }{3} \right)-i\sin \left( -\dfrac{670\pi }{3} \right) \right).......(7)
Now again converting it in terms of π\pi in equation (7) and also using the fact that cos(θ)=cosθ\cos (-\theta )=\cos \theta and also sin(θ)=sinθ\sin (-\theta )=-\sin \theta and also rearranging, we get,
4+5(cos(222π+2π3)+isin(222π+2π3))+3(cos(223π+π3)+isin(223π+π3)).......(8)\Rightarrow 4+5\left( \cos \left( 222\pi +\dfrac{2\pi }{3} \right)+i\sin \left( 222\pi +\dfrac{2\pi }{3} \right) \right)+3\left( \cos \left( 223\pi +\dfrac{\pi }{3} \right)+i\sin \left( 223\pi +\dfrac{\pi }{3} \right) \right).......(8)
Simplifying all the terms in equation (8) we get,
4+5(cos(2π3)+isin(2π3))+3(cos(π3)+isin(π3)).......(9)\Rightarrow 4+5\left( \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right)+3\left( -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right).......(9)
Now substituting the values of basic standard angles of sin and cos in equation (9) we get,
4+5(12+i32)+3(12+i32).......(10)\Rightarrow 4+5\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right)+3\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right).......(10)
Now adding and subtracting the terms in equation (10) we get,

& \Rightarrow 4+8\left( -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right) \\\ & \Rightarrow 4-4+4\sqrt{3}i=4\sqrt{3}i \\\ \end{aligned}$$ Hence the correct answer is option (c). Note: Remembering the conversion of complex form into polar form and conversion of terms with powers into simple terms using equation (1) is the key here. Also we in a hurry can make a mistake in solving equation (8) if we fail to change cos and sin terms using $$\cos (-\theta )=\cos \theta $$ and also $$\sin (-\theta )=-\sin \theta $$.