Solveeit Logo

Question

Question: The value of \(4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right)}{2!}{{\left( \log 2 \r...

The value of 4+2(1+2)log2+2(1+22)2!(log2)2+2(1+23)3!(log2)3+.... is4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right)}{2!}{{\left( \log 2 \right)}^{2}}+\dfrac{2\left( 1+{{2}^{3}} \right)}{3!}{{\left( \log 2 \right)}^{3}}+....\ is
A. 10
B. 12
C. log(32.42)\log \left( {{3}^{2}}{{.4}^{2}} \right)
D. log(22.32)\log \left( {{2}^{2}}{{.3}^{2}} \right)

Explanation

Solution

Hint: Expand the given entity. It gives the expansion form of elog2 and e2log2{{e}^{\log 2\ }}and\ {{e}^{2\log 2}}. Substitute the exponent values and simplify the expression obtained until you get a whole number.

Complete step-by-step answer:
Given us 4+2(1+2)log2+2(1+22)(log2)22!+2(1+23)(log2)33!4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}
Take the first number 4 it can split as 2 + 2;
Take 2nd value, 2(1+2)log22\left( 1+2 \right)\log 2 it can be split us as;
(2+2×2)log2=2log2+4log2\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2
Similarly,
2(1+22)(log2)22!=(2+23)(log2)22!=2(log2)22!+23(log2)22!\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}
The other values can be similarly splitted,
4+2(1+2)log2+2(1+22)(log2)22!+........ =2+2+2log2+4log2+2(log2)22!+23(log2)22!+..... =(2+2log2+2(log2)22!+.....)+(2+4log2+23(log2)22!+....) \begin{aligned} & 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\\ & =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\\ & =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\\ \end{aligned}
Taking 2 common from both brackets
=2(1+log2+(log2)22!+.....)+2(1+2log2+(2log2)22!+....)=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)
This is the fourier expansion of general expansion of elog2_{e}{{\log }^{2}}.
 elog2=1+log2+(log2)22!+.....\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....
Similarly 1+2log2(2log2)22!+....1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... is the expansion of elog2log2_{e}{{\log }^{2\log 2}}
\therefore It can be written as,
2(elog2)+2(e2log2)2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)
We know that elogx=x{{e}^{\log x}}=x
 elog2=2 e2log2=elog22=22=4 2×2+2×4=4+8=12 \begin{aligned} & \therefore \ {{e}^{\log 2}}=2 \\\ & {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\\ & \Rightarrow 2\times 2+2\times 4=4+8=12 \\\ \end{aligned}
Therefore, the correct answer is option B.

Note: Splitting of the entity is important in the beginning. So as to form the expansion form of elogx{{e}^{\log x}}.