Question
Question: The value of \(4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right)}{2!}{{\left( \log 2 \r...
The value of 4+2(1+2)log2+2!2(1+22)(log2)2+3!2(1+23)(log2)3+.... is
A. 10
B. 12
C. log(32.42)
D. log(22.32)
Solution
Hint: Expand the given entity. It gives the expansion form of elog2 and e2log2. Substitute the exponent values and simplify the expression obtained until you get a whole number.
Complete step-by-step answer:
Given us 4+2(1+2)log2+2!2(1+22)(log2)2+3!2(1+23)(log2)3
Take the first number 4 it can split as 2 + 2;
Take 2nd value, 2(1+2)log2 it can be split us as;
(2+2×2)log2=2log2+4log2
Similarly,
2!2(1+22)(log2)2=2!(2+23)(log2)2=2!2(log2)2+2!23(log2)2
The other values can be similarly splitted,
4+2(1+2)log2+2!2(1+22)(log2)2+........=2+2+2log2+4log2+2!2(log2)2+2!23(log2)2+.....=(2+2log2+2!2(log2)2+.....)+(2+4log2+2!23(log2)2+....)
Taking 2 common from both brackets
=2(1+log2+2!(log2)2+.....)+2(1+2log2+2!(2log2)2+....)
This is the fourier expansion of general expansion of elog2.
∴ elog2=1+log2+2!(log2)2+.....
Similarly 1+2log22!(2log2)2+.... is the expansion of elog2log2
∴ It can be written as,
2(elog2)+2(e2log2)
We know that elogx=x
∴ elog2=2e2log2=elog22=22=4⇒2×2+2×4=4+8=12
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of elogx.