Question
Question: The value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - ......
The value of 30C030C10−30C130C11+30C230C12−.......+30C1030C20 is
(A) 30C10
(B) 30C15
(C) 30C13
(D) 60C30
Solution
Here we will apply the Binomial Expansion to solve the given problem. A combination is the number of ways we can combine things, when the order does not matter.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x+y)n.
Formula used: Combination rule: nCr=nCn−r
Binomial expansion:
(x+y)n=nC0xn+nC1xn−1y1+nC2xn−2y2+......+nCn−1xyn−1+nCnyn
Putting x=1,y=x, we get,
(1+x)n=nC0+nC1x1+nC2x2+......+nCn−1xn−1+nCnxn
Putting x=1,y=−x, we get,
(1−x)n=nC0+nC1(−x)1+nC2(−x)2+......+nCn−1(−x)n−1+nCn(−x)n
Solving, (1−x)n=nC0−nC1x1+nC2x2+......+(−1)n−1nCn−1xn−1+(−1)nnCnxn
Complete step-by-step answer:
We need to find out the value of 30C030C10−30C130C11+30C230C12−.......+30C1030C20.
Now we can use the binomial expansion putting x=1,y=x,n=30 we get,
⇒(1+x)30=30C0+30C1x1+30C2x2+......+30C30−1x30−1+30C30x30
Solving we get,
⇒(1+x)30=30C0+30C1x1+30C2x2+......+30C29x29+30C30x30………(i)
Again, we can use the binomial expansion putting x=1,y=−x,n=30we get,
⇒(1−x)30=30C0+(−1)×30C1x1+(−1)2×30C2x2+......+(−1)30−1×30C30−1x30−1+(−1)30×30C30x30Solving we get,
⇒(1−x)30=30C0+(−1)×30C1x1+(−1)2×30C2x2+......+(−1)29×30C29x29+(−1)30×30C30x30
⇒(1−x)30=30C0−30C1x1+30C2x2+......−30C30−1x30−1+30C30x30……..(ii)
Now multiplying (i) and (ii) we get,
Solving the L.H.S we get,
\Rightarrow {\left\\{ {(1 + x)(1 - x)} \right\\}^{30}} = {(1 - {x^2})^{30}}
Hence, we have to calculate the multiplication for the RHS,
By applying Binomial expansion in the L.H.S, that is substituting the x as x2 in binomial expansion of (1−x)30 we get,
⇒(1−x2)30 =30C0+(−1)1×30C1(x2)1+(−1)2×30C2(x2)2+.......+(−1)10×30C10(x2)10+....+(−1)30−1×30C30−1(x2)30−1+(−1)30×30C30(x2)30Simplifying (add and subtract the terms in power) we get,
⇒(1−x2)30=30C0−30C1x2+30C2x4+...+30C10(x2)10−.....−30C29(x2)29+30C30(x2)30
Multiplying the power values to simplify,
⇒(1−x2)30=30C0−30C1x2+30C2x4+...+30C10x20−.....−30C29x58+30C30x60
Putting the above expression of L.H.S in (iii), we get,
Now, we need to find out the value of
30C030C10−30C130C11+30C230C12−.......+30C1030C20
We can write it as,
⇒30C030C20−30C130C19+30C230C18−.......+30C1030C10
Since we know from combination rule,
⇒nCr=nCn−r
Comparing the coefficient of x20 from both sides we get,
∴30C10=30C0×30C20−30C1×30C19+30C230C18−.......+30C1030C10
Hence (A) is the correct option.
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.