Solveeit Logo

Question

Question: The value of \(2(\sin^{6}\theta + \cos^{6}\theta) - 3(\sin^{4}\theta + \cos^{4}\theta) + 1\) is...

The value of 2(sin6θ+cos6θ)3(sin4θ+cos4θ)+12(\sin^{6}\theta + \cos^{6}\theta) - 3(\sin^{4}\theta + \cos^{4}\theta) + 1 is

A

2

B

0

C

4

D

6

Answer

0

Explanation

Solution

(sin2θ+cos2θ)3=(1)3(\sin^{2}\theta + \cos^{2}\theta)^{3} = (1)^{3}

sin6θ+cos6θ+3sin2θcos2θ=1\Rightarrow \sin^{6}\theta + \cos^{6}\theta + 3\sin^{2}\theta\cos^{2}\theta = 1

and sin4θ+cos4θ+2sin2θcos2θ=1\sin^{4}\theta + \cos^{4}\theta + 2\sin^{2}\theta\cos^{2}\theta = 1

Both gives, 2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=02(\sin^{6}\theta + \cos^{6}\theta) - 3(\sin^{4}\theta + \cos^{4}\theta) + 1 = 0.