Solveeit Logo

Question

Question: The value of $^{27}C_1 - ^{13}C_1) + (^{27}C_2 - ^{13}C_2) + (^{27}C_3 - ^{13}C_3) + ... + (^{27}C_{...

The value of 27C113C1)+(27C213C2)+(27C313C3)+...+(27C1313C13)^{27}C_1 - ^{13}C_1) + (^{27}C_2 - ^{13}C_2) + (^{27}C_3 - ^{13}C_3) + ... + (^{27}C_{13} - ^{13}C_{13}) is

A

2262122^{26} - 2^{12}

B

2272132^{27} - 2^{13}

C

213(2131)2^{13}(2^{13} - 1)

D

214(2131)2^{14}(2^{13} - 1)

Answer

2262132^{26} - 2^{13}

Explanation

Solution

The sum can be written as \sum_{k=1}^{13} (^{27}C_k - ^{13}C_k) = \sum_{k=1}^{13} ^{27}C_k - \sum_{k=1}^{13} ^{13}C_k. We know that \sum_{k=0}^{n} ^nC_k = 2^n. Also, \sum_{k=0}^{27} ^{27}C_k = 2^{27} and \sum_{k=0}^{13} ^{13}C_k = 2^{13}. Due to symmetry, nCk=nCnk^{n}C_k = ^{n}C_{n-k}. For 27Ck^{27}C_k, the sum of terms from k=1k=1 to k=13k=13 is equal to the sum of terms from k=14k=14 to k=26k=26. So, 2^{27} = ^{27}C_0 + \sum_{k=1}^{13} ^{27}C_k + \sum_{k=14}^{26} ^{27}C_k + ^{27}C_{27} = 1 + \sum_{k=1}^{13} ^{27}C_k + \sum_{k=1}^{13} ^{27}C_k + 1. 2^{27} = 2 + 2 \sum_{k=1}^{13} ^{27}C_k \implies \sum_{k=1}^{13} ^{27}C_k = \frac{2^{27}-2}{2} = 2^{26}-1. For the second sum, 2^{13} = ^{13}C_0 + \sum_{k=1}^{13} ^{13}C_k = 1 + \sum_{k=1}^{13} ^{13}C_k. So, \sum_{k=1}^{13} ^{13}C_k = 2^{13}-1. The total sum is (2261)(2131)=226213(2^{26}-1) - (2^{13}-1) = 2^{26}-2^{13}. This can be factored as 213(2131)2^{13}(2^{13}-1).