Question
Question: The value of $^{27}C_1 - ^{13}C_1) + (^{27}C_2 - ^{13}C_2) + (^{27}C_3 - ^{13}C_3) + ... + (^{27}C_{...
The value of 27C1−13C1)+(27C2−13C2)+(27C3−13C3)+...+(27C13−13C13) is

226−212
227−213
213(213−1)
214(213−1)
226−213
Solution
The sum can be written as \sum_{k=1}^{13} (^{27}C_k - ^{13}C_k) = \sum_{k=1}^{13} ^{27}C_k - \sum_{k=1}^{13} ^{13}C_k. We know that \sum_{k=0}^{n} ^nC_k = 2^n. Also, \sum_{k=0}^{27} ^{27}C_k = 2^{27} and \sum_{k=0}^{13} ^{13}C_k = 2^{13}. Due to symmetry, nCk=nCn−k. For 27Ck, the sum of terms from k=1 to k=13 is equal to the sum of terms from k=14 to k=26. So, 2^{27} = ^{27}C_0 + \sum_{k=1}^{13} ^{27}C_k + \sum_{k=14}^{26} ^{27}C_k + ^{27}C_{27} = 1 + \sum_{k=1}^{13} ^{27}C_k + \sum_{k=1}^{13} ^{27}C_k + 1. 2^{27} = 2 + 2 \sum_{k=1}^{13} ^{27}C_k \implies \sum_{k=1}^{13} ^{27}C_k = \frac{2^{27}-2}{2} = 2^{26}-1. For the second sum, 2^{13} = ^{13}C_0 + \sum_{k=1}^{13} ^{13}C_k = 1 + \sum_{k=1}^{13} ^{13}C_k. So, \sum_{k=1}^{13} ^{13}C_k = 2^{13}-1. The total sum is (226−1)−(213−1)=226−213. This can be factored as 213(213−1).
